All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.enterprisemath.math.statistics.IntervalFrequencyDistributionEstimator Maven / Gradle / Ivy

The newest version!
package com.enterprisemath.math.statistics;

import org.apache.commons.lang3.builder.ToStringBuilder;

import com.enterprisemath.math.probability.IntervalFrequencyDistribution;
import com.enterprisemath.math.statistics.observation.ObservationIterator;
import com.enterprisemath.math.statistics.observation.ObservationProvider;
import com.enterprisemath.utils.ValidationUtils;
import java.util.HashMap;
import java.util.Map;

/**
 * This class is responsible for estimating the normal distribution mixture.
 * Purpose of this class is to let the user to set high level limits and let the algorithm to do the rest.
 * The whole algorithm works in the way that whole estimation starts with one component.
 * Every iteration one component is selected and split. Then classic EM algorithm is invoked.
 *
 * @author radek.hecl
 *
 */
public class IntervalFrequencyDistributionEstimator implements Estimator {

    /**
     * Builder object.
     */
    public static class Builder {

        /**
         * Width of the unit.
         */
        private Double unitWidth = 1d;

        /**
         * Sets unit width.
         *
         * @param unitWidth unit width
         * @return this instance
         */
        public Builder setUnitWidth(double unitWidth) {
            this.unitWidth = unitWidth;
            return this;
        }

        /**
         * Builds the result object.
         *
         * @return created object
         */
        public IntervalFrequencyDistributionEstimator build() {
            return new IntervalFrequencyDistributionEstimator(this);
        }
    }

    /**
     * Width of the unit.
     */
    private Double unitWidth;

    /**
     * Creates new instance.
     *
     * @param builder builder object
     */
    public IntervalFrequencyDistributionEstimator(Builder builder) {
        unitWidth = builder.unitWidth;
        guardInvariants();
    }

    /**
     * Guards this object to be consistent. Throws exception if this is not the case.
     */
    private void guardInvariants() {
        ValidationUtils.guardPositiveDouble(unitWidth, "unitWidth must be positive");
    }

    @Override
    public IntervalFrequencyDistribution estimate(ObservationProvider observations) {
        Map freqs = new HashMap();
        ObservationIterator iterator = observations.getIterator();
        while (iterator.isNextAvailable()) {
            double x = iterator.getNext();
            int id = getIntervalId(x);
            if (freqs.containsKey(id)) {
                freqs.put(id, freqs.get(id) + 1);
            }
            else {
                freqs.put(id, 1);
            }
        }
        double fact = (double)iterator.getNumIterated() * unitWidth;
        IntervalFrequencyDistribution.Builder res = new IntervalFrequencyDistribution.Builder();
        res.setUnitWidth(unitWidth);
        for (int id : freqs.keySet()) {
            res.setUnitValue(id, freqs.get(id) / fact);
        }
        return res.build();
    }

    /**
     * Returns interval id.
     *
     * @param x random value
     * @return interval id
     */
    private int getIntervalId(double x) {
        double did = Math.abs(x) / unitWidth;
        int id = (int) did;
        if (x < 0) {
            if (did != (double) id) {
                id = id + 1;
            }
            id = -id;
        }
        return id;
    }

    @Override
    public String toString() {
        return ToStringBuilder.reflectionToString(this);
    }

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy