All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.esotericsoftware.spine.Animation Maven / Gradle / Ivy

There is a newer version: 4.2.7
Show newest version
/******************************************************************************
 * Spine Runtimes License Agreement
 * Last updated May 1, 2019. Replaces all prior versions.
 *
 * Copyright (c) 2013-2019, Esoteric Software LLC
 *
 * Integration of the Spine Runtimes into software or otherwise creating
 * derivative works of the Spine Runtimes is permitted under the terms and
 * conditions of Section 2 of the Spine Editor License Agreement:
 * http://esotericsoftware.com/spine-editor-license
 *
 * Otherwise, it is permitted to integrate the Spine Runtimes into software
 * or otherwise create derivative works of the Spine Runtimes (collectively,
 * "Products"), provided that each user of the Products must obtain their own
 * Spine Editor license and redistribution of the Products in any form must
 * include this license and copyright notice.
 *
 * THIS SOFTWARE IS PROVIDED BY ESOTERIC SOFTWARE LLC "AS IS" AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
 * NO EVENT SHALL ESOTERIC SOFTWARE LLC BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, BUSINESS
 * INTERRUPTION, OR LOSS OF USE, DATA, OR PROFITS) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *****************************************************************************/

package com.esotericsoftware.spine;

import static com.esotericsoftware.spine.Animation.MixBlend.*;
import static com.esotericsoftware.spine.Animation.MixDirection.*;

import com.badlogic.gdx.graphics.Color;
import com.badlogic.gdx.math.MathUtils;
import com.badlogic.gdx.utils.Array;
import com.badlogic.gdx.utils.FloatArray;

import com.esotericsoftware.spine.attachments.Attachment;
import com.esotericsoftware.spine.attachments.VertexAttachment;

/** A simple container for a list of timelines and a name. */
public class Animation {
	final String name;
	final Array timelines;
	float duration;

	public Animation (String name, Array timelines, float duration) {
		if (name == null) throw new IllegalArgumentException("name cannot be null.");
		if (timelines == null) throw new IllegalArgumentException("timelines cannot be null.");
		this.name = name;
		this.timelines = timelines;
		this.duration = duration;
	}

	public Array getTimelines () {
		return timelines;
	}

	/** The duration of the animation in seconds, which is the highest time of all keys in the timeline. */
	public float getDuration () {
		return duration;
	}

	public void setDuration (float duration) {
		this.duration = duration;
	}

	/** Applies all the animation's timelines to the specified skeleton.
	 * 

* See Timeline {@link Timeline#apply(Skeleton, float, float, Array, float, MixBlend, MixDirection)}. * @param loop If true, the animation repeats after {@link #getDuration()}. */ public void apply (Skeleton skeleton, float lastTime, float time, boolean loop, Array events, float alpha, MixBlend blend, MixDirection direction) { if (skeleton == null) throw new IllegalArgumentException("skeleton cannot be null."); if (loop && duration != 0) { time %= duration; if (lastTime > 0) lastTime %= duration; } Array timelines = this.timelines; for (int i = 0, n = timelines.size; i < n; i++) timelines.get(i).apply(skeleton, lastTime, time, events, alpha, blend, direction); } /** The animation's name, which is unique within the skeleton. */ public String getName () { return name; } public String toString () { return name; } /** @param target After the first and before the last value. * @return index of first value greater than the target. */ static int binarySearch (float[] values, float target, int step) { int low = 0; int high = values.length / step - 2; if (high == 0) return step; int current = high >>> 1; while (true) { if (values[(current + 1) * step] <= target) low = current + 1; else high = current; if (low == high) return (low + 1) * step; current = (low + high) >>> 1; } } /** @param target After the first and before the last value. * @return index of first value greater than the target. */ static int binarySearch (float[] values, float target) { int low = 0; int high = values.length - 2; if (high == 0) return 1; int current = high >>> 1; while (true) { if (values[current + 1] <= target) low = current + 1; else high = current; if (low == high) return low + 1; current = (low + high) >>> 1; } } static int linearSearch (float[] values, float target, int step) { for (int i = 0, last = values.length - step; i <= last; i += step) if (values[i] > target) return i; return -1; } /** The interface for all timelines. */ static public interface Timeline { /** Applies this timeline to the skeleton. * @param skeleton The skeleton the timeline is being applied to. This provides access to the bones, slots, and other * skeleton components the timeline may change. * @param lastTime The time this timeline was last applied. Timelines such as {@link EventTimeline} trigger only at specific * times rather than every frame. In that case, the timeline triggers everything between lastTime * (exclusive) and time (inclusive). * @param time The time within the animation. Most timelines find the key before and the key after this time so they can * interpolate between the keys. * @param events If any events are fired, they are added to this list. Can be null to ignore firing events or if the * timeline does not fire events. * @param alpha 0 applies the current or setup value (depending on blend). 1 applies the timeline value. * Between 0 and 1 applies a value between the current or setup value and the timeline value. By adjusting * alpha over time, an animation can be mixed in or out. alpha can also be useful to * apply animations on top of each other (layered). * @param blend Controls how mixing is applied when alpha < 1. * @param direction Indicates whether the timeline is mixing in or out. Used by timelines which perform instant transitions, * such as {@link DrawOrderTimeline} or {@link AttachmentTimeline}. */ public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha, MixBlend blend, MixDirection direction); /** Uniquely encodes both the type of this timeline and the skeleton property that it affects. */ public int getPropertyId (); } /** Controls how a timeline value is mixed with the setup pose value or current pose value. *

* See Timeline {@link Timeline#apply(Skeleton, float, float, Array, float, MixBlend, MixDirection)}. */ static public enum MixBlend { /** Transitions from the setup value to the timeline value (the current value is not used). Before the first key, the setup * value is set. */ setup, /** Transitions from the current value to the timeline value. Before the first key, transitions from the current value to * the setup value. Timelines which perform instant transitions, such as {@link DrawOrderTimeline} or * {@link AttachmentTimeline}, use the setup value before the first key. *

* first is intended for the first animations applied, not for animations layered on top of those. */ first, /** Transitions from the current value to the timeline value. No change is made before the first key (the current value is * kept until the first key). *

* replace is intended for animations layered on top of others, not for the first animations applied. */ replace, /** Transitions from the current value to the current value plus the timeline value. No change is made before the first key * (the current value is kept until the first key). *

* add is intended for animations layered on top of others, not for the first animations applied. */ add } /** Indicates whether a timeline's alpha is mixing out over time toward 0 (the setup or current pose value) or * mixing in toward 1 (the timeline's value). *

* See Timeline {@link Timeline#apply(Skeleton, float, float, Array, float, MixBlend, MixDirection)}. */ static public enum MixDirection { in, out } static private enum TimelineType { rotate, translate, scale, shear, // attachment, color, deform, // event, drawOrder, // ikConstraint, transformConstraint, // pathConstraintPosition, pathConstraintSpacing, pathConstraintMix, // twoColor } /** An interface for timelines which change the property of a bone. */ static public interface BoneTimeline extends Timeline { public void setBoneIndex (int index); /** The index of the bone in {@link Skeleton#getBones()} that will be changed. */ public int getBoneIndex (); } /** An interface for timelines which change the property of a slot. */ static public interface SlotTimeline extends Timeline { public void setSlotIndex (int index); /** The index of the slot in {@link Skeleton#getSlots()} that will be changed. */ public int getSlotIndex (); } /** The base class for timelines that use interpolation between key frame values. */ abstract static public class CurveTimeline implements Timeline { static public final float LINEAR = 0, STEPPED = 1, BEZIER = 2; static private final int BEZIER_SIZE = 10 * 2 - 1; private final float[] curves; // type, x, y, ... public CurveTimeline (int frameCount) { if (frameCount <= 0) throw new IllegalArgumentException("frameCount must be > 0: " + frameCount); curves = new float[(frameCount - 1) * BEZIER_SIZE]; } /** The number of key frames for this timeline. */ public int getFrameCount () { return curves.length / BEZIER_SIZE + 1; } /** Sets the specified key frame to linear interpolation. */ public void setLinear (int frameIndex) { curves[frameIndex * BEZIER_SIZE] = LINEAR; } /** Sets the specified key frame to stepped interpolation. */ public void setStepped (int frameIndex) { curves[frameIndex * BEZIER_SIZE] = STEPPED; } /** Returns the interpolation type for the specified key frame. * @return Linear is 0, stepped is 1, Bezier is 2. */ public float getCurveType (int frameIndex) { int index = frameIndex * BEZIER_SIZE; if (index == curves.length) return LINEAR; float type = curves[index]; if (type == LINEAR) return LINEAR; if (type == STEPPED) return STEPPED; return BEZIER; } /** Sets the specified key frame to Bezier interpolation. cx1 and cx2 are from 0 to 1, * representing the percent of time between the two key frames. cy1 and cy2 are the percent of the * difference between the key frame's values. */ public void setCurve (int frameIndex, float cx1, float cy1, float cx2, float cy2) { float tmpx = (-cx1 * 2 + cx2) * 0.03f, tmpy = (-cy1 * 2 + cy2) * 0.03f; float dddfx = ((cx1 - cx2) * 3 + 1) * 0.006f, dddfy = ((cy1 - cy2) * 3 + 1) * 0.006f; float ddfx = tmpx * 2 + dddfx, ddfy = tmpy * 2 + dddfy; float dfx = cx1 * 0.3f + tmpx + dddfx * 0.16666667f, dfy = cy1 * 0.3f + tmpy + dddfy * 0.16666667f; int i = frameIndex * BEZIER_SIZE; float[] curves = this.curves; curves[i++] = BEZIER; float x = dfx, y = dfy; for (int n = i + BEZIER_SIZE - 1; i < n; i += 2) { curves[i] = x; curves[i + 1] = y; dfx += ddfx; dfy += ddfy; ddfx += dddfx; ddfy += dddfy; x += dfx; y += dfy; } } /** Returns the interpolated percentage for the specified key frame and linear percentage. */ public float getCurvePercent (int frameIndex, float percent) { percent = MathUtils.clamp(percent, 0, 1); float[] curves = this.curves; int i = frameIndex * BEZIER_SIZE; float type = curves[i]; if (type == LINEAR) return percent; if (type == STEPPED) return 0; i++; float x = 0; for (int start = i, n = i + BEZIER_SIZE - 1; i < n; i += 2) { x = curves[i]; if (x >= percent) { if (i == start) return curves[i + 1] * percent / x; // First point is 0,0. float prevX = curves[i - 2], prevY = curves[i - 1]; return prevY + (curves[i + 1] - prevY) * (percent - prevX) / (x - prevX); } } float y = curves[i - 1]; return y + (1 - y) * (percent - x) / (1 - x); // Last point is 1,1. } } /** Changes a bone's local {@link Bone#getRotation()}. */ static public class RotateTimeline extends CurveTimeline implements BoneTimeline { static public final int ENTRIES = 2; static final int PREV_TIME = -2, PREV_ROTATION = -1; static final int ROTATION = 1; int boneIndex; final float[] frames; // time, degrees, ... public RotateTimeline (int frameCount) { super(frameCount); frames = new float[frameCount << 1]; } public int getPropertyId () { return (TimelineType.rotate.ordinal() << 24) + boneIndex; } public void setBoneIndex (int index) { if (index < 0) throw new IllegalArgumentException("index must be >= 0."); this.boneIndex = index; } /** The index of the bone in {@link Skeleton#getBones()} that will be changed. */ public int getBoneIndex () { return boneIndex; } /** The time in seconds and rotation in degrees for each key frame. */ public float[] getFrames () { return frames; } /** Sets the time in seconds and the rotation in degrees for the specified key frame. */ public void setFrame (int frameIndex, float time, float degrees) { frameIndex <<= 1; frames[frameIndex] = time; frames[frameIndex + ROTATION] = degrees; } public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha, MixBlend blend, MixDirection direction) { Bone bone = skeleton.bones.get(boneIndex); float[] frames = this.frames; if (time < frames[0]) { // Time is before first frame. switch (blend) { case setup: bone.rotation = bone.data.rotation; return; case first: float r = bone.data.rotation - bone.rotation; bone.rotation += (r - (16384 - (int)(16384.499999999996 - r / 360)) * 360) * alpha; } return; } if (time >= frames[frames.length - ENTRIES]) { // Time is after last frame. float r = frames[frames.length + PREV_ROTATION]; switch (blend) { case setup: bone.rotation = bone.data.rotation + r * alpha; break; case first: case replace: r += bone.data.rotation - bone.rotation; r -= (16384 - (int)(16384.499999999996 - r / 360)) * 360; // Fall through. case add: bone.rotation += r * alpha; } return; } // Interpolate between the previous frame and the current frame. int frame = binarySearch(frames, time, ENTRIES); float prevRotation = frames[frame + PREV_ROTATION]; float frameTime = frames[frame]; float percent = getCurvePercent((frame >> 1) - 1, 1 - (time - frameTime) / (frames[frame + PREV_TIME] - frameTime)); float r = frames[frame + ROTATION] - prevRotation; r = prevRotation + (r - (16384 - (int)(16384.499999999996 - r / 360)) * 360) * percent; switch (blend) { case setup: bone.rotation = bone.data.rotation + (r - (16384 - (int)(16384.499999999996 - r / 360)) * 360) * alpha; break; case first: case replace: r += bone.data.rotation - bone.rotation; // Fall through. case add: bone.rotation += (r - (16384 - (int)(16384.499999999996 - r / 360)) * 360) * alpha; } } } /** Changes a bone's local {@link Bone#getX()} and {@link Bone#getY()}. */ static public class TranslateTimeline extends CurveTimeline implements BoneTimeline { static public final int ENTRIES = 3; static final int PREV_TIME = -3, PREV_X = -2, PREV_Y = -1; static final int X = 1, Y = 2; int boneIndex; final float[] frames; // time, x, y, ... public TranslateTimeline (int frameCount) { super(frameCount); frames = new float[frameCount * ENTRIES]; } public int getPropertyId () { return (TimelineType.translate.ordinal() << 24) + boneIndex; } public void setBoneIndex (int index) { if (index < 0) throw new IllegalArgumentException("index must be >= 0."); this.boneIndex = index; } /** The index of the bone in {@link Skeleton#getBones()} that will be changed. */ public int getBoneIndex () { return boneIndex; } /** The time in seconds, x, and y values for each key frame. */ public float[] getFrames () { return frames; } /** Sets the time in seconds, x, and y values for the specified key frame. */ public void setFrame (int frameIndex, float time, float x, float y) { frameIndex *= ENTRIES; frames[frameIndex] = time; frames[frameIndex + X] = x; frames[frameIndex + Y] = y; } public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha, MixBlend blend, MixDirection direction) { Bone bone = skeleton.bones.get(boneIndex); float[] frames = this.frames; if (time < frames[0]) { // Time is before first frame. switch (blend) { case setup: bone.x = bone.data.x; bone.y = bone.data.y; return; case first: bone.x += (bone.data.x - bone.x) * alpha; bone.y += (bone.data.y - bone.y) * alpha; } return; } float x, y; if (time >= frames[frames.length - ENTRIES]) { // Time is after last frame. x = frames[frames.length + PREV_X]; y = frames[frames.length + PREV_Y]; } else { // Interpolate between the previous frame and the current frame. int frame = binarySearch(frames, time, ENTRIES); x = frames[frame + PREV_X]; y = frames[frame + PREV_Y]; float frameTime = frames[frame]; float percent = getCurvePercent(frame / ENTRIES - 1, 1 - (time - frameTime) / (frames[frame + PREV_TIME] - frameTime)); x += (frames[frame + X] - x) * percent; y += (frames[frame + Y] - y) * percent; } switch (blend) { case setup: bone.x = bone.data.x + x * alpha; bone.y = bone.data.y + y * alpha; break; case first: case replace: bone.x += (bone.data.x + x - bone.x) * alpha; bone.y += (bone.data.y + y - bone.y) * alpha; break; case add: bone.x += x * alpha; bone.y += y * alpha; } } } /** Changes a bone's local {@link Bone#getScaleX()} and {@link Bone#getScaleY()}. */ static public class ScaleTimeline extends TranslateTimeline { public ScaleTimeline (int frameCount) { super(frameCount); } public int getPropertyId () { return (TimelineType.scale.ordinal() << 24) + boneIndex; } public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha, MixBlend blend, MixDirection direction) { Bone bone = skeleton.bones.get(boneIndex); float[] frames = this.frames; if (time < frames[0]) { // Time is before first frame. switch (blend) { case setup: bone.scaleX = bone.data.scaleX; bone.scaleY = bone.data.scaleY; return; case first: bone.scaleX += (bone.data.scaleX - bone.scaleX) * alpha; bone.scaleY += (bone.data.scaleY - bone.scaleY) * alpha; } return; } float x, y; if (time >= frames[frames.length - ENTRIES]) { // Time is after last frame. x = frames[frames.length + PREV_X] * bone.data.scaleX; y = frames[frames.length + PREV_Y] * bone.data.scaleY; } else { // Interpolate between the previous frame and the current frame. int frame = binarySearch(frames, time, ENTRIES); x = frames[frame + PREV_X]; y = frames[frame + PREV_Y]; float frameTime = frames[frame]; float percent = getCurvePercent(frame / ENTRIES - 1, 1 - (time - frameTime) / (frames[frame + PREV_TIME] - frameTime)); x = (x + (frames[frame + X] - x) * percent) * bone.data.scaleX; y = (y + (frames[frame + Y] - y) * percent) * bone.data.scaleY; } if (alpha == 1) { if (blend == add) { bone.scaleX += x - bone.data.scaleX; bone.scaleY += y - bone.data.scaleY; } else { bone.scaleX = x; bone.scaleY = y; } } else { // Mixing out uses sign of setup or current pose, else use sign of key. float bx, by; if (direction == out) { switch (blend) { case setup: bx = bone.data.scaleX; by = bone.data.scaleY; bone.scaleX = bx + (Math.abs(x) * Math.signum(bx) - bx) * alpha; bone.scaleY = by + (Math.abs(y) * Math.signum(by) - by) * alpha; break; case first: case replace: bx = bone.scaleX; by = bone.scaleY; bone.scaleX = bx + (Math.abs(x) * Math.signum(bx) - bx) * alpha; bone.scaleY = by + (Math.abs(y) * Math.signum(by) - by) * alpha; break; case add: bx = bone.scaleX; by = bone.scaleY; bone.scaleX = bx + (Math.abs(x) * Math.signum(bx) - bone.data.scaleX) * alpha; bone.scaleY = by + (Math.abs(y) * Math.signum(by) - bone.data.scaleY) * alpha; } } else { switch (blend) { case setup: bx = Math.abs(bone.data.scaleX) * Math.signum(x); by = Math.abs(bone.data.scaleY) * Math.signum(y); bone.scaleX = bx + (x - bx) * alpha; bone.scaleY = by + (y - by) * alpha; break; case first: case replace: bx = Math.abs(bone.scaleX) * Math.signum(x); by = Math.abs(bone.scaleY) * Math.signum(y); bone.scaleX = bx + (x - bx) * alpha; bone.scaleY = by + (y - by) * alpha; break; case add: bx = Math.signum(x); by = Math.signum(y); bone.scaleX = Math.abs(bone.scaleX) * bx + (x - Math.abs(bone.data.scaleX) * bx) * alpha; bone.scaleY = Math.abs(bone.scaleY) * by + (y - Math.abs(bone.data.scaleY) * by) * alpha; } } } } } /** Changes a bone's local {@link Bone#getShearX()} and {@link Bone#getShearY()}. */ static public class ShearTimeline extends TranslateTimeline { public ShearTimeline (int frameCount) { super(frameCount); } public int getPropertyId () { return (TimelineType.shear.ordinal() << 24) + boneIndex; } public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha, MixBlend blend, MixDirection direction) { Bone bone = skeleton.bones.get(boneIndex); float[] frames = this.frames; if (time < frames[0]) { // Time is before first frame. switch (blend) { case setup: bone.shearX = bone.data.shearX; bone.shearY = bone.data.shearY; return; case first: bone.shearX += (bone.data.shearX - bone.shearX) * alpha; bone.shearY += (bone.data.shearY - bone.shearY) * alpha; } return; } float x, y; if (time >= frames[frames.length - ENTRIES]) { // Time is after last frame. x = frames[frames.length + PREV_X]; y = frames[frames.length + PREV_Y]; } else { // Interpolate between the previous frame and the current frame. int frame = binarySearch(frames, time, ENTRIES); x = frames[frame + PREV_X]; y = frames[frame + PREV_Y]; float frameTime = frames[frame]; float percent = getCurvePercent(frame / ENTRIES - 1, 1 - (time - frameTime) / (frames[frame + PREV_TIME] - frameTime)); x = x + (frames[frame + X] - x) * percent; y = y + (frames[frame + Y] - y) * percent; } switch (blend) { case setup: bone.shearX = bone.data.shearX + x * alpha; bone.shearY = bone.data.shearY + y * alpha; break; case first: case replace: bone.shearX += (bone.data.shearX + x - bone.shearX) * alpha; bone.shearY += (bone.data.shearY + y - bone.shearY) * alpha; break; case add: bone.shearX += x * alpha; bone.shearY += y * alpha; } } } /** Changes a slot's {@link Slot#getColor()}. */ static public class ColorTimeline extends CurveTimeline implements SlotTimeline { static public final int ENTRIES = 5; static private final int PREV_TIME = -5, PREV_R = -4, PREV_G = -3, PREV_B = -2, PREV_A = -1; static private final int R = 1, G = 2, B = 3, A = 4; int slotIndex; private final float[] frames; // time, r, g, b, a, ... public ColorTimeline (int frameCount) { super(frameCount); frames = new float[frameCount * ENTRIES]; } public int getPropertyId () { return (TimelineType.color.ordinal() << 24) + slotIndex; } public void setSlotIndex (int index) { if (index < 0) throw new IllegalArgumentException("index must be >= 0."); this.slotIndex = index; } /** The index of the slot in {@link Skeleton#getSlots()} that will be changed. */ public int getSlotIndex () { return slotIndex; } /** The time in seconds, red, green, blue, and alpha values for each key frame. */ public float[] getFrames () { return frames; } /** Sets the time in seconds, red, green, blue, and alpha for the specified key frame. */ public void setFrame (int frameIndex, float time, float r, float g, float b, float a) { frameIndex *= ENTRIES; frames[frameIndex] = time; frames[frameIndex + R] = r; frames[frameIndex + G] = g; frames[frameIndex + B] = b; frames[frameIndex + A] = a; } public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha, MixBlend blend, MixDirection direction) { Slot slot = skeleton.slots.get(slotIndex); float[] frames = this.frames; if (time < frames[0]) { // Time is before first frame. switch (blend) { case setup: slot.color.set(slot.data.color); return; case first: Color color = slot.color, setup = slot.data.color; color.add((setup.r - color.r) * alpha, (setup.g - color.g) * alpha, (setup.b - color.b) * alpha, (setup.a - color.a) * alpha); } return; } float r, g, b, a; if (time >= frames[frames.length - ENTRIES]) { // Time is after last frame. int i = frames.length; r = frames[i + PREV_R]; g = frames[i + PREV_G]; b = frames[i + PREV_B]; a = frames[i + PREV_A]; } else { // Interpolate between the previous frame and the current frame. int frame = binarySearch(frames, time, ENTRIES); r = frames[frame + PREV_R]; g = frames[frame + PREV_G]; b = frames[frame + PREV_B]; a = frames[frame + PREV_A]; float frameTime = frames[frame]; float percent = getCurvePercent(frame / ENTRIES - 1, 1 - (time - frameTime) / (frames[frame + PREV_TIME] - frameTime)); r += (frames[frame + R] - r) * percent; g += (frames[frame + G] - g) * percent; b += (frames[frame + B] - b) * percent; a += (frames[frame + A] - a) * percent; } if (alpha == 1) slot.color.set(r, g, b, a); else { Color color = slot.color; if (blend == setup) color.set(slot.data.color); color.add((r - color.r) * alpha, (g - color.g) * alpha, (b - color.b) * alpha, (a - color.a) * alpha); } } } /** Changes a slot's {@link Slot#getColor()} and {@link Slot#getDarkColor()} for two color tinting. */ static public class TwoColorTimeline extends CurveTimeline implements SlotTimeline { static public final int ENTRIES = 8; static private final int PREV_TIME = -8, PREV_R = -7, PREV_G = -6, PREV_B = -5, PREV_A = -4; static private final int PREV_R2 = -3, PREV_G2 = -2, PREV_B2 = -1; static private final int R = 1, G = 2, B = 3, A = 4, R2 = 5, G2 = 6, B2 = 7; int slotIndex; private final float[] frames; // time, r, g, b, a, r2, g2, b2, ... public TwoColorTimeline (int frameCount) { super(frameCount); frames = new float[frameCount * ENTRIES]; } public int getPropertyId () { return (TimelineType.twoColor.ordinal() << 24) + slotIndex; } public void setSlotIndex (int index) { if (index < 0) throw new IllegalArgumentException("index must be >= 0."); this.slotIndex = index; } /** The index of the slot in {@link Skeleton#getSlots()} that will be changed. */ public int getSlotIndex () { return slotIndex; } /** The time in seconds, red, green, blue, and alpha values for each key frame. */ public float[] getFrames () { return frames; } /** Sets the time in seconds, light, and dark colors for the specified key frame. */ public void setFrame (int frameIndex, float time, float r, float g, float b, float a, float r2, float g2, float b2) { frameIndex *= ENTRIES; frames[frameIndex] = time; frames[frameIndex + R] = r; frames[frameIndex + G] = g; frames[frameIndex + B] = b; frames[frameIndex + A] = a; frames[frameIndex + R2] = r2; frames[frameIndex + G2] = g2; frames[frameIndex + B2] = b2; } public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha, MixBlend blend, MixDirection direction) { Slot slot = skeleton.slots.get(slotIndex); float[] frames = this.frames; if (time < frames[0]) { // Time is before first frame. switch (blend) { case setup: slot.color.set(slot.data.color); slot.darkColor.set(slot.data.darkColor); return; case first: Color light = slot.color, dark = slot.darkColor, setupLight = slot.data.color, setupDark = slot.data.darkColor; light.add((setupLight.r - light.r) * alpha, (setupLight.g - light.g) * alpha, (setupLight.b - light.b) * alpha, (setupLight.a - light.a) * alpha); dark.add((setupDark.r - dark.r) * alpha, (setupDark.g - dark.g) * alpha, (setupDark.b - dark.b) * alpha, 0); } return; } float r, g, b, a, r2, g2, b2; if (time >= frames[frames.length - ENTRIES]) { // Time is after last frame. int i = frames.length; r = frames[i + PREV_R]; g = frames[i + PREV_G]; b = frames[i + PREV_B]; a = frames[i + PREV_A]; r2 = frames[i + PREV_R2]; g2 = frames[i + PREV_G2]; b2 = frames[i + PREV_B2]; } else { // Interpolate between the previous frame and the current frame. int frame = binarySearch(frames, time, ENTRIES); r = frames[frame + PREV_R]; g = frames[frame + PREV_G]; b = frames[frame + PREV_B]; a = frames[frame + PREV_A]; r2 = frames[frame + PREV_R2]; g2 = frames[frame + PREV_G2]; b2 = frames[frame + PREV_B2]; float frameTime = frames[frame]; float percent = getCurvePercent(frame / ENTRIES - 1, 1 - (time - frameTime) / (frames[frame + PREV_TIME] - frameTime)); r += (frames[frame + R] - r) * percent; g += (frames[frame + G] - g) * percent; b += (frames[frame + B] - b) * percent; a += (frames[frame + A] - a) * percent; r2 += (frames[frame + R2] - r2) * percent; g2 += (frames[frame + G2] - g2) * percent; b2 += (frames[frame + B2] - b2) * percent; } if (alpha == 1) { slot.color.set(r, g, b, a); slot.darkColor.set(r2, g2, b2, 1); } else { Color light = slot.color, dark = slot.darkColor; if (blend == setup) { light.set(slot.data.color); dark.set(slot.data.darkColor); } light.add((r - light.r) * alpha, (g - light.g) * alpha, (b - light.b) * alpha, (a - light.a) * alpha); dark.add((r2 - dark.r) * alpha, (g2 - dark.g) * alpha, (b2 - dark.b) * alpha, 0); } } } /** Changes a slot's {@link Slot#getAttachment()}. */ static public class AttachmentTimeline implements SlotTimeline { int slotIndex; final float[] frames; // time, ... final String[] attachmentNames; public AttachmentTimeline (int frameCount) { frames = new float[frameCount]; attachmentNames = new String[frameCount]; } public int getPropertyId () { return (TimelineType.attachment.ordinal() << 24) + slotIndex; } /** The number of key frames for this timeline. */ public int getFrameCount () { return frames.length; } public void setSlotIndex (int index) { if (index < 0) throw new IllegalArgumentException("index must be >= 0."); this.slotIndex = index; } /** The index of the slot in {@link Skeleton#getSlots()} that will be changed. */ public int getSlotIndex () { return slotIndex; } /** The time in seconds for each key frame. */ public float[] getFrames () { return frames; } /** The attachment name for each key frame. May contain null values to clear the attachment. */ public String[] getAttachmentNames () { return attachmentNames; } /** Sets the time in seconds and the attachment name for the specified key frame. */ public void setFrame (int frameIndex, float time, String attachmentName) { frames[frameIndex] = time; attachmentNames[frameIndex] = attachmentName; } public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha, MixBlend blend, MixDirection direction) { Slot slot = skeleton.slots.get(slotIndex); if (direction == out && blend == setup) { String attachmentName = slot.data.attachmentName; slot.setAttachment(attachmentName == null ? null : skeleton.getAttachment(slotIndex, attachmentName)); return; } float[] frames = this.frames; if (time < frames[0]) { // Time is before first frame. if (blend == setup || blend == first) { String attachmentName = slot.data.attachmentName; slot.setAttachment(attachmentName == null ? null : skeleton.getAttachment(slotIndex, attachmentName)); } return; } int frameIndex; if (time >= frames[frames.length - 1]) // Time is after last frame. frameIndex = frames.length - 1; else frameIndex = binarySearch(frames, time) - 1; String attachmentName = attachmentNames[frameIndex]; slot.setAttachment(attachmentName == null ? null : skeleton.getAttachment(slotIndex, attachmentName)); } } /** Changes a slot's {@link Slot#getAttachmentVertices()} to deform a {@link VertexAttachment}. */ static public class DeformTimeline extends CurveTimeline implements SlotTimeline { int slotIndex; VertexAttachment attachment; private final float[] frames; // time, ... private final float[][] frameVertices; public DeformTimeline (int frameCount) { super(frameCount); frames = new float[frameCount]; frameVertices = new float[frameCount][]; } public int getPropertyId () { return (TimelineType.deform.ordinal() << 27) + attachment.getId() + slotIndex; } public void setSlotIndex (int index) { if (index < 0) throw new IllegalArgumentException("index must be >= 0."); this.slotIndex = index; } /** The index of the slot in {@link Skeleton#getSlots()} that will be changed. */ public int getSlotIndex () { return slotIndex; } public void setAttachment (VertexAttachment attachment) { this.attachment = attachment; } /** The attachment that will be deformed. */ public VertexAttachment getAttachment () { return attachment; } /** The time in seconds for each key frame. */ public float[] getFrames () { return frames; } /** The vertices for each key frame. */ public float[][] getVertices () { return frameVertices; } /** Sets the time in seconds and the vertices for the specified key frame. * @param vertices Vertex positions for an unweighted VertexAttachment, or deform offsets if it has weights. */ public void setFrame (int frameIndex, float time, float[] vertices) { frames[frameIndex] = time; frameVertices[frameIndex] = vertices; } public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha, MixBlend blend, MixDirection direction) { Slot slot = skeleton.slots.get(slotIndex); Attachment slotAttachment = slot.attachment; if (!(slotAttachment instanceof VertexAttachment) || !((VertexAttachment)slotAttachment).applyDeform(attachment)) return; FloatArray verticesArray = slot.getAttachmentVertices(); if (verticesArray.size == 0) blend = setup; float[][] frameVertices = this.frameVertices; int vertexCount = frameVertices[0].length; float[] frames = this.frames; if (time < frames[0]) { // Time is before first frame. VertexAttachment vertexAttachment = (VertexAttachment)slotAttachment; switch (blend) { case setup: verticesArray.clear(); return; case first: if (alpha == 1) { verticesArray.clear(); return; } float[] vertices = verticesArray.setSize(vertexCount); if (vertexAttachment.getBones() == null) { // Unweighted vertex positions. float[] setupVertices = vertexAttachment.getVertices(); for (int i = 0; i < vertexCount; i++) vertices[i] += (setupVertices[i] - vertices[i]) * alpha; } else { // Weighted deform offsets. alpha = 1 - alpha; for (int i = 0; i < vertexCount; i++) vertices[i] *= alpha; } } return; } float[] vertices = verticesArray.setSize(vertexCount); if (time >= frames[frames.length - 1]) { // Time is after last frame. float[] lastVertices = frameVertices[frames.length - 1]; if (alpha == 1) { if (blend == add) { VertexAttachment vertexAttachment = (VertexAttachment)slotAttachment; if (vertexAttachment.getBones() == null) { // Unweighted vertex positions, no alpha. float[] setupVertices = vertexAttachment.getVertices(); for (int i = 0; i < vertexCount; i++) vertices[i] += lastVertices[i] - setupVertices[i]; } else { // Weighted deform offsets, no alpha. for (int i = 0; i < vertexCount; i++) vertices[i] += lastVertices[i]; } } else { // Vertex positions or deform offsets, no alpha. System.arraycopy(lastVertices, 0, vertices, 0, vertexCount); } } else { switch (blend) { case setup: { VertexAttachment vertexAttachment = (VertexAttachment)slotAttachment; if (vertexAttachment.getBones() == null) { // Unweighted vertex positions, with alpha. float[] setupVertices = vertexAttachment.getVertices(); for (int i = 0; i < vertexCount; i++) { float setup = setupVertices[i]; vertices[i] = setup + (lastVertices[i] - setup) * alpha; } } else { // Weighted deform offsets, with alpha. for (int i = 0; i < vertexCount; i++) vertices[i] = lastVertices[i] * alpha; } break; } case first: case replace: // Vertex positions or deform offsets, with alpha. for (int i = 0; i < vertexCount; i++) vertices[i] += (lastVertices[i] - vertices[i]) * alpha; break; case add: VertexAttachment vertexAttachment = (VertexAttachment)slotAttachment; if (vertexAttachment.getBones() == null) { // Unweighted vertex positions, no alpha. float[] setupVertices = vertexAttachment.getVertices(); for (int i = 0; i < vertexCount; i++) vertices[i] += (lastVertices[i] - setupVertices[i]) * alpha; } else { // Weighted deform offsets, alpha. for (int i = 0; i < vertexCount; i++) vertices[i] += lastVertices[i] * alpha; } } } return; } // Interpolate between the previous frame and the current frame. int frame = binarySearch(frames, time); float[] prevVertices = frameVertices[frame - 1]; float[] nextVertices = frameVertices[frame]; float frameTime = frames[frame]; float percent = getCurvePercent(frame - 1, 1 - (time - frameTime) / (frames[frame - 1] - frameTime)); if (alpha == 1) { if (blend == add) { VertexAttachment vertexAttachment = (VertexAttachment)slotAttachment; if (vertexAttachment.getBones() == null) { // Unweighted vertex positions, no alpha. float[] setupVertices = vertexAttachment.getVertices(); for (int i = 0; i < vertexCount; i++) { float prev = prevVertices[i]; vertices[i] += prev + (nextVertices[i] - prev) * percent - setupVertices[i]; } } else { // Weighted deform offsets, no alpha. for (int i = 0; i < vertexCount; i++) { float prev = prevVertices[i]; vertices[i] += prev + (nextVertices[i] - prev) * percent; } } } else { // Vertex positions or deform offsets, no alpha. for (int i = 0; i < vertexCount; i++) { float prev = prevVertices[i]; vertices[i] = prev + (nextVertices[i] - prev) * percent; } } } else { switch (blend) { case setup: { VertexAttachment vertexAttachment = (VertexAttachment)slotAttachment; if (vertexAttachment.getBones() == null) { // Unweighted vertex positions, with alpha. float[] setupVertices = vertexAttachment.getVertices(); for (int i = 0; i < vertexCount; i++) { float prev = prevVertices[i], setup = setupVertices[i]; vertices[i] = setup + (prev + (nextVertices[i] - prev) * percent - setup) * alpha; } } else { // Weighted deform offsets, with alpha. for (int i = 0; i < vertexCount; i++) { float prev = prevVertices[i]; vertices[i] = (prev + (nextVertices[i] - prev) * percent) * alpha; } } break; } case first: case replace: // Vertex positions or deform offsets, with alpha. for (int i = 0; i < vertexCount; i++) { float prev = prevVertices[i]; vertices[i] += (prev + (nextVertices[i] - prev) * percent - vertices[i]) * alpha; } break; case add: VertexAttachment vertexAttachment = (VertexAttachment)slotAttachment; if (vertexAttachment.getBones() == null) { // Unweighted vertex positions, with alpha. float[] setupVertices = vertexAttachment.getVertices(); for (int i = 0; i < vertexCount; i++) { float prev = prevVertices[i]; vertices[i] += (prev + (nextVertices[i] - prev) * percent - setupVertices[i]) * alpha; } } else { // Weighted deform offsets, with alpha. for (int i = 0; i < vertexCount; i++) { float prev = prevVertices[i]; vertices[i] += (prev + (nextVertices[i] - prev) * percent) * alpha; } } } } } } /** Fires an {@link Event} when specific animation times are reached. */ static public class EventTimeline implements Timeline { private final float[] frames; // time, ... private final Event[] events; public EventTimeline (int frameCount) { frames = new float[frameCount]; events = new Event[frameCount]; } public int getPropertyId () { return TimelineType.event.ordinal() << 24; } /** The number of key frames for this timeline. */ public int getFrameCount () { return frames.length; } /** The time in seconds for each key frame. */ public float[] getFrames () { return frames; } /** The event for each key frame. */ public Event[] getEvents () { return events; } /** Sets the time in seconds and the event for the specified key frame. */ public void setFrame (int frameIndex, Event event) { frames[frameIndex] = event.time; events[frameIndex] = event; } /** Fires events for frames > lastTime and <= time. */ public void apply (Skeleton skeleton, float lastTime, float time, Array firedEvents, float alpha, MixBlend blend, MixDirection direction) { if (firedEvents == null) return; float[] frames = this.frames; int frameCount = frames.length; if (lastTime > time) { // Fire events after last time for looped animations. apply(skeleton, lastTime, Integer.MAX_VALUE, firedEvents, alpha, blend, direction); lastTime = -1f; } else if (lastTime >= frames[frameCount - 1]) // Last time is after last frame. return; if (time < frames[0]) return; // Time is before first frame. int frame; if (lastTime < frames[0]) frame = 0; else { frame = binarySearch(frames, lastTime); float frameTime = frames[frame]; while (frame > 0) { // Fire multiple events with the same frame. if (frames[frame - 1] != frameTime) break; frame--; } } for (; frame < frameCount && time >= frames[frame]; frame++) firedEvents.add(events[frame]); } } /** Changes a skeleton's {@link Skeleton#getDrawOrder()}. */ static public class DrawOrderTimeline implements Timeline { private final float[] frames; // time, ... private final int[][] drawOrders; public DrawOrderTimeline (int frameCount) { frames = new float[frameCount]; drawOrders = new int[frameCount][]; } public int getPropertyId () { return TimelineType.drawOrder.ordinal() << 24; } /** The number of key frames for this timeline. */ public int getFrameCount () { return frames.length; } /** The time in seconds for each key frame. */ public float[] getFrames () { return frames; } /** The draw order for each key frame. See {@link #setFrame(int, float, int[])}. */ public int[][] getDrawOrders () { return drawOrders; } /** Sets the time in seconds and the draw order for the specified key frame. * @param drawOrder For each slot in {@link Skeleton#slots}, the index of the new draw order. May be null to use setup pose * draw order. */ public void setFrame (int frameIndex, float time, int[] drawOrder) { frames[frameIndex] = time; drawOrders[frameIndex] = drawOrder; } public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha, MixBlend blend, MixDirection direction) { Array drawOrder = skeleton.drawOrder; Array slots = skeleton.slots; if (direction == out && blend == setup) { System.arraycopy(slots.items, 0, drawOrder.items, 0, slots.size); return; } float[] frames = this.frames; if (time < frames[0]) { // Time is before first frame. if (blend == setup || blend == first) System.arraycopy(slots.items, 0, drawOrder.items, 0, slots.size); return; } int frame; if (time >= frames[frames.length - 1]) // Time is after last frame. frame = frames.length - 1; else frame = binarySearch(frames, time) - 1; int[] drawOrderToSetupIndex = drawOrders[frame]; if (drawOrderToSetupIndex == null) System.arraycopy(slots.items, 0, drawOrder.items, 0, slots.size); else { for (int i = 0, n = drawOrderToSetupIndex.length; i < n; i++) drawOrder.set(i, slots.get(drawOrderToSetupIndex[i])); } } } /** Changes an IK constraint's {@link IkConstraint#getMix()}, {@link IkConstraint#getBendDirection()}, * {@link IkConstraint#getStretch()}, and {@link IkConstraint#getCompress()}. */ static public class IkConstraintTimeline extends CurveTimeline { static public final int ENTRIES = 5; static private final int PREV_TIME = -5, PREV_MIX = -4, PREV_BEND_DIRECTION = -3, PREV_COMPRESS = -2, PREV_STRETCH = -1; static private final int MIX = 1, BEND_DIRECTION = 2, COMPRESS = 3, STRETCH = 4; int ikConstraintIndex; private final float[] frames; // time, mix, bendDirection, compress, stretch, ... public IkConstraintTimeline (int frameCount) { super(frameCount); frames = new float[frameCount * ENTRIES]; } public int getPropertyId () { return (TimelineType.ikConstraint.ordinal() << 24) + ikConstraintIndex; } public void setIkConstraintIndex (int index) { if (index < 0) throw new IllegalArgumentException("index must be >= 0."); this.ikConstraintIndex = index; } /** The index of the IK constraint slot in {@link Skeleton#getIkConstraints()} that will be changed. */ public int getIkConstraintIndex () { return ikConstraintIndex; } /** The time in seconds, mix, bend direction, compress, and stretch for each key frame. */ public float[] getFrames () { return frames; } /** Sets the time in seconds, mix, bend direction, compress, and stretch for the specified key frame. */ public void setFrame (int frameIndex, float time, float mix, int bendDirection, boolean compress, boolean stretch) { frameIndex *= ENTRIES; frames[frameIndex] = time; frames[frameIndex + MIX] = mix; frames[frameIndex + BEND_DIRECTION] = bendDirection; frames[frameIndex + COMPRESS] = compress ? 1 : 0; frames[frameIndex + STRETCH] = stretch ? 1 : 0; } public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha, MixBlend blend, MixDirection direction) { IkConstraint constraint = skeleton.ikConstraints.get(ikConstraintIndex); float[] frames = this.frames; if (time < frames[0]) { // Time is before first frame. switch (blend) { case setup: constraint.mix = constraint.data.mix; constraint.bendDirection = constraint.data.bendDirection; constraint.compress = constraint.data.compress; constraint.stretch = constraint.data.stretch; return; case first: constraint.mix += (constraint.data.mix - constraint.mix) * alpha; constraint.bendDirection = constraint.data.bendDirection; constraint.compress = constraint.data.compress; constraint.stretch = constraint.data.stretch; } return; } if (time >= frames[frames.length - ENTRIES]) { // Time is after last frame. if (blend == setup) { constraint.mix = constraint.data.mix + (frames[frames.length + PREV_MIX] - constraint.data.mix) * alpha; if (direction == out) { constraint.bendDirection = constraint.data.bendDirection; constraint.compress = constraint.data.compress; constraint.stretch = constraint.data.stretch; } else { constraint.bendDirection = (int)frames[frames.length + PREV_BEND_DIRECTION]; constraint.compress = frames[frames.length + PREV_COMPRESS] != 0; constraint.stretch = frames[frames.length + PREV_STRETCH] != 0; } } else { constraint.mix += (frames[frames.length + PREV_MIX] - constraint.mix) * alpha; if (direction == in) { constraint.bendDirection = (int)frames[frames.length + PREV_BEND_DIRECTION]; constraint.compress = frames[frames.length + PREV_COMPRESS] != 0; constraint.stretch = frames[frames.length + PREV_STRETCH] != 0; } } return; } // Interpolate between the previous frame and the current frame. int frame = binarySearch(frames, time, ENTRIES); float mix = frames[frame + PREV_MIX]; float frameTime = frames[frame]; float percent = getCurvePercent(frame / ENTRIES - 1, 1 - (time - frameTime) / (frames[frame + PREV_TIME] - frameTime)); if (blend == setup) { constraint.mix = constraint.data.mix + (mix + (frames[frame + MIX] - mix) * percent - constraint.data.mix) * alpha; if (direction == out) { constraint.bendDirection = constraint.data.bendDirection; constraint.compress = constraint.data.compress; constraint.stretch = constraint.data.stretch; } else { constraint.bendDirection = (int)frames[frame + PREV_BEND_DIRECTION]; constraint.compress = frames[frame + PREV_COMPRESS] != 0; constraint.stretch = frames[frame + PREV_STRETCH] != 0; } } else { constraint.mix += (mix + (frames[frame + MIX] - mix) * percent - constraint.mix) * alpha; if (direction == in) { constraint.bendDirection = (int)frames[frame + PREV_BEND_DIRECTION]; constraint.compress = frames[frame + PREV_COMPRESS] != 0; constraint.stretch = frames[frame + PREV_STRETCH] != 0; } } } } /** Changes a transform constraint's mixes. */ static public class TransformConstraintTimeline extends CurveTimeline { static public final int ENTRIES = 5; static private final int PREV_TIME = -5, PREV_ROTATE = -4, PREV_TRANSLATE = -3, PREV_SCALE = -2, PREV_SHEAR = -1; static private final int ROTATE = 1, TRANSLATE = 2, SCALE = 3, SHEAR = 4; int transformConstraintIndex; private final float[] frames; // time, rotate mix, translate mix, scale mix, shear mix, ... public TransformConstraintTimeline (int frameCount) { super(frameCount); frames = new float[frameCount * ENTRIES]; } public int getPropertyId () { return (TimelineType.transformConstraint.ordinal() << 24) + transformConstraintIndex; } public void setTransformConstraintIndex (int index) { if (index < 0) throw new IllegalArgumentException("index must be >= 0."); this.transformConstraintIndex = index; } /** The index of the transform constraint slot in {@link Skeleton#getTransformConstraints()} that will be changed. */ public int getTransformConstraintIndex () { return transformConstraintIndex; } /** The time in seconds, rotate mix, translate mix, scale mix, and shear mix for each key frame. */ public float[] getFrames () { return frames; } /** The time in seconds, rotate mix, translate mix, scale mix, and shear mix for the specified key frame. */ public void setFrame (int frameIndex, float time, float rotateMix, float translateMix, float scaleMix, float shearMix) { frameIndex *= ENTRIES; frames[frameIndex] = time; frames[frameIndex + ROTATE] = rotateMix; frames[frameIndex + TRANSLATE] = translateMix; frames[frameIndex + SCALE] = scaleMix; frames[frameIndex + SHEAR] = shearMix; } public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha, MixBlend blend, MixDirection direction) { TransformConstraint constraint = skeleton.transformConstraints.get(transformConstraintIndex); float[] frames = this.frames; if (time < frames[0]) { // Time is before first frame. TransformConstraintData data = constraint.data; switch (blend) { case setup: constraint.rotateMix = data.rotateMix; constraint.translateMix = data.translateMix; constraint.scaleMix = data.scaleMix; constraint.shearMix = data.shearMix; return; case first: constraint.rotateMix += (data.rotateMix - constraint.rotateMix) * alpha; constraint.translateMix += (data.translateMix - constraint.translateMix) * alpha; constraint.scaleMix += (data.scaleMix - constraint.scaleMix) * alpha; constraint.shearMix += (data.shearMix - constraint.shearMix) * alpha; } return; } float rotate, translate, scale, shear; if (time >= frames[frames.length - ENTRIES]) { // Time is after last frame. int i = frames.length; rotate = frames[i + PREV_ROTATE]; translate = frames[i + PREV_TRANSLATE]; scale = frames[i + PREV_SCALE]; shear = frames[i + PREV_SHEAR]; } else { // Interpolate between the previous frame and the current frame. int frame = binarySearch(frames, time, ENTRIES); rotate = frames[frame + PREV_ROTATE]; translate = frames[frame + PREV_TRANSLATE]; scale = frames[frame + PREV_SCALE]; shear = frames[frame + PREV_SHEAR]; float frameTime = frames[frame]; float percent = getCurvePercent(frame / ENTRIES - 1, 1 - (time - frameTime) / (frames[frame + PREV_TIME] - frameTime)); rotate += (frames[frame + ROTATE] - rotate) * percent; translate += (frames[frame + TRANSLATE] - translate) * percent; scale += (frames[frame + SCALE] - scale) * percent; shear += (frames[frame + SHEAR] - shear) * percent; } if (blend == setup) { TransformConstraintData data = constraint.data; constraint.rotateMix = data.rotateMix + (rotate - data.rotateMix) * alpha; constraint.translateMix = data.translateMix + (translate - data.translateMix) * alpha; constraint.scaleMix = data.scaleMix + (scale - data.scaleMix) * alpha; constraint.shearMix = data.shearMix + (shear - data.shearMix) * alpha; } else { constraint.rotateMix += (rotate - constraint.rotateMix) * alpha; constraint.translateMix += (translate - constraint.translateMix) * alpha; constraint.scaleMix += (scale - constraint.scaleMix) * alpha; constraint.shearMix += (shear - constraint.shearMix) * alpha; } } } /** Changes a path constraint's {@link PathConstraint#getPosition()}. */ static public class PathConstraintPositionTimeline extends CurveTimeline { static public final int ENTRIES = 2; static final int PREV_TIME = -2, PREV_VALUE = -1; static final int VALUE = 1; int pathConstraintIndex; final float[] frames; // time, position, ... public PathConstraintPositionTimeline (int frameCount) { super(frameCount); frames = new float[frameCount * ENTRIES]; } public int getPropertyId () { return (TimelineType.pathConstraintPosition.ordinal() << 24) + pathConstraintIndex; } public void setPathConstraintIndex (int index) { if (index < 0) throw new IllegalArgumentException("index must be >= 0."); this.pathConstraintIndex = index; } /** The index of the path constraint slot in {@link Skeleton#getPathConstraints()} that will be changed. */ public int getPathConstraintIndex () { return pathConstraintIndex; } /** The time in seconds and path constraint position for each key frame. */ public float[] getFrames () { return frames; } /** Sets the time in seconds and path constraint position for the specified key frame. */ public void setFrame (int frameIndex, float time, float position) { frameIndex *= ENTRIES; frames[frameIndex] = time; frames[frameIndex + VALUE] = position; } public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha, MixBlend blend, MixDirection direction) { PathConstraint constraint = skeleton.pathConstraints.get(pathConstraintIndex); float[] frames = this.frames; if (time < frames[0]) { // Time is before first frame. switch (blend) { case setup: constraint.position = constraint.data.position; return; case first: constraint.position += (constraint.data.position - constraint.position) * alpha; } return; } float position; if (time >= frames[frames.length - ENTRIES]) // Time is after last frame. position = frames[frames.length + PREV_VALUE]; else { // Interpolate between the previous frame and the current frame. int frame = binarySearch(frames, time, ENTRIES); position = frames[frame + PREV_VALUE]; float frameTime = frames[frame]; float percent = getCurvePercent(frame / ENTRIES - 1, 1 - (time - frameTime) / (frames[frame + PREV_TIME] - frameTime)); position += (frames[frame + VALUE] - position) * percent; } if (blend == setup) constraint.position = constraint.data.position + (position - constraint.data.position) * alpha; else constraint.position += (position - constraint.position) * alpha; } } /** Changes a path constraint's {@link PathConstraint#getSpacing()}. */ static public class PathConstraintSpacingTimeline extends PathConstraintPositionTimeline { public PathConstraintSpacingTimeline (int frameCount) { super(frameCount); } public int getPropertyId () { return (TimelineType.pathConstraintSpacing.ordinal() << 24) + pathConstraintIndex; } public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha, MixBlend blend, MixDirection direction) { PathConstraint constraint = skeleton.pathConstraints.get(pathConstraintIndex); float[] frames = this.frames; if (time < frames[0]) { // Time is before first frame. switch (blend) { case setup: constraint.spacing = constraint.data.spacing; return; case first: constraint.spacing += (constraint.data.spacing - constraint.spacing) * alpha; } return; } float spacing; if (time >= frames[frames.length - ENTRIES]) // Time is after last frame. spacing = frames[frames.length + PREV_VALUE]; else { // Interpolate between the previous frame and the current frame. int frame = binarySearch(frames, time, ENTRIES); spacing = frames[frame + PREV_VALUE]; float frameTime = frames[frame]; float percent = getCurvePercent(frame / ENTRIES - 1, 1 - (time - frameTime) / (frames[frame + PREV_TIME] - frameTime)); spacing += (frames[frame + VALUE] - spacing) * percent; } if (blend == setup) constraint.spacing = constraint.data.spacing + (spacing - constraint.data.spacing) * alpha; else constraint.spacing += (spacing - constraint.spacing) * alpha; } } /** Changes a path constraint's mixes. */ static public class PathConstraintMixTimeline extends CurveTimeline { static public final int ENTRIES = 3; static private final int PREV_TIME = -3, PREV_ROTATE = -2, PREV_TRANSLATE = -1; static private final int ROTATE = 1, TRANSLATE = 2; int pathConstraintIndex; private final float[] frames; // time, rotate mix, translate mix, ... public PathConstraintMixTimeline (int frameCount) { super(frameCount); frames = new float[frameCount * ENTRIES]; } public int getPropertyId () { return (TimelineType.pathConstraintMix.ordinal() << 24) + pathConstraintIndex; } public void setPathConstraintIndex (int index) { if (index < 0) throw new IllegalArgumentException("index must be >= 0."); this.pathConstraintIndex = index; } /** The index of the path constraint slot in {@link Skeleton#getPathConstraints()} that will be changed. */ public int getPathConstraintIndex () { return pathConstraintIndex; } /** The time in seconds, rotate mix, and translate mix for each key frame. */ public float[] getFrames () { return frames; } /** The time in seconds, rotate mix, and translate mix for the specified key frame. */ public void setFrame (int frameIndex, float time, float rotateMix, float translateMix) { frameIndex *= ENTRIES; frames[frameIndex] = time; frames[frameIndex + ROTATE] = rotateMix; frames[frameIndex + TRANSLATE] = translateMix; } public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha, MixBlend blend, MixDirection direction) { PathConstraint constraint = skeleton.pathConstraints.get(pathConstraintIndex); float[] frames = this.frames; if (time < frames[0]) { // Time is before first frame. switch (blend) { case setup: constraint.rotateMix = constraint.data.rotateMix; constraint.translateMix = constraint.data.translateMix; return; case first: constraint.rotateMix += (constraint.data.rotateMix - constraint.rotateMix) * alpha; constraint.translateMix += (constraint.data.translateMix - constraint.translateMix) * alpha; } return; } float rotate, translate; if (time >= frames[frames.length - ENTRIES]) { // Time is after last frame. rotate = frames[frames.length + PREV_ROTATE]; translate = frames[frames.length + PREV_TRANSLATE]; } else { // Interpolate between the previous frame and the current frame. int frame = binarySearch(frames, time, ENTRIES); rotate = frames[frame + PREV_ROTATE]; translate = frames[frame + PREV_TRANSLATE]; float frameTime = frames[frame]; float percent = getCurvePercent(frame / ENTRIES - 1, 1 - (time - frameTime) / (frames[frame + PREV_TIME] - frameTime)); rotate += (frames[frame + ROTATE] - rotate) * percent; translate += (frames[frame + TRANSLATE] - translate) * percent; } if (blend == setup) { constraint.rotateMix = constraint.data.rotateMix + (rotate - constraint.data.rotateMix) * alpha; constraint.translateMix = constraint.data.translateMix + (translate - constraint.data.translateMix) * alpha; } else { constraint.rotateMix += (rotate - constraint.rotateMix) * alpha; constraint.translateMix += (translate - constraint.translateMix) * alpha; } } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy