com.esotericsoftware.spine.Animation Maven / Gradle / Ivy
/******************************************************************************
* Spine Runtimes License Agreement
* Last updated May 1, 2019. Replaces all prior versions.
*
* Copyright (c) 2013-2019, Esoteric Software LLC
*
* Integration of the Spine Runtimes into software or otherwise creating
* derivative works of the Spine Runtimes is permitted under the terms and
* conditions of Section 2 of the Spine Editor License Agreement:
* http://esotericsoftware.com/spine-editor-license
*
* Otherwise, it is permitted to integrate the Spine Runtimes into software
* or otherwise create derivative works of the Spine Runtimes (collectively,
* "Products"), provided that each user of the Products must obtain their own
* Spine Editor license and redistribution of the Products in any form must
* include this license and copyright notice.
*
* THIS SOFTWARE IS PROVIDED BY ESOTERIC SOFTWARE LLC "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL ESOTERIC SOFTWARE LLC BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, BUSINESS
* INTERRUPTION, OR LOSS OF USE, DATA, OR PROFITS) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
package com.esotericsoftware.spine;
import static com.esotericsoftware.spine.Animation.MixBlend.*;
import static com.esotericsoftware.spine.Animation.MixDirection.*;
import com.badlogic.gdx.graphics.Color;
import com.badlogic.gdx.math.MathUtils;
import com.badlogic.gdx.utils.Array;
import com.badlogic.gdx.utils.FloatArray;
import com.esotericsoftware.spine.attachments.Attachment;
import com.esotericsoftware.spine.attachments.VertexAttachment;
/** A simple container for a list of timelines and a name. */
public class Animation {
final String name;
final Array timelines;
float duration;
public Animation (String name, Array timelines, float duration) {
if (name == null) throw new IllegalArgumentException("name cannot be null.");
if (timelines == null) throw new IllegalArgumentException("timelines cannot be null.");
this.name = name;
this.timelines = timelines;
this.duration = duration;
}
public Array getTimelines () {
return timelines;
}
/** The duration of the animation in seconds, which is the highest time of all keys in the timeline. */
public float getDuration () {
return duration;
}
public void setDuration (float duration) {
this.duration = duration;
}
/** Applies all the animation's timelines to the specified skeleton.
*
* See Timeline {@link Timeline#apply(Skeleton, float, float, Array, float, MixBlend, MixDirection)}.
* @param loop If true, the animation repeats after {@link #getDuration()}. */
public void apply (Skeleton skeleton, float lastTime, float time, boolean loop, Array events, float alpha,
MixBlend blend, MixDirection direction) {
if (skeleton == null) throw new IllegalArgumentException("skeleton cannot be null.");
if (loop && duration != 0) {
time %= duration;
if (lastTime > 0) lastTime %= duration;
}
Array timelines = this.timelines;
for (int i = 0, n = timelines.size; i < n; i++)
timelines.get(i).apply(skeleton, lastTime, time, events, alpha, blend, direction);
}
/** The animation's name, which is unique within the skeleton. */
public String getName () {
return name;
}
public String toString () {
return name;
}
/** @param target After the first and before the last value.
* @return index of first value greater than the target. */
static int binarySearch (float[] values, float target, int step) {
int low = 0;
int high = values.length / step - 2;
if (high == 0) return step;
int current = high >>> 1;
while (true) {
if (values[(current + 1) * step] <= target)
low = current + 1;
else
high = current;
if (low == high) return (low + 1) * step;
current = (low + high) >>> 1;
}
}
/** @param target After the first and before the last value.
* @return index of first value greater than the target. */
static int binarySearch (float[] values, float target) {
int low = 0;
int high = values.length - 2;
if (high == 0) return 1;
int current = high >>> 1;
while (true) {
if (values[current + 1] <= target)
low = current + 1;
else
high = current;
if (low == high) return low + 1;
current = (low + high) >>> 1;
}
}
static int linearSearch (float[] values, float target, int step) {
for (int i = 0, last = values.length - step; i <= last; i += step)
if (values[i] > target) return i;
return -1;
}
/** The interface for all timelines. */
static public interface Timeline {
/** Applies this timeline to the skeleton.
* @param skeleton The skeleton the timeline is being applied to. This provides access to the bones, slots, and other
* skeleton components the timeline may change.
* @param lastTime The time this timeline was last applied. Timelines such as {@link EventTimeline} trigger only at specific
* times rather than every frame. In that case, the timeline triggers everything between lastTime
* (exclusive) and time
(inclusive).
* @param time The time within the animation. Most timelines find the key before and the key after this time so they can
* interpolate between the keys.
* @param events If any events are fired, they are added to this list. Can be null to ignore firing events or if the
* timeline does not fire events.
* @param alpha 0 applies the current or setup value (depending on blend
). 1 applies the timeline value.
* Between 0 and 1 applies a value between the current or setup value and the timeline value. By adjusting
* alpha
over time, an animation can be mixed in or out. alpha
can also be useful to
* apply animations on top of each other (layered).
* @param blend Controls how mixing is applied when alpha
< 1.
* @param direction Indicates whether the timeline is mixing in or out. Used by timelines which perform instant transitions,
* such as {@link DrawOrderTimeline} or {@link AttachmentTimeline}. */
public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha, MixBlend blend,
MixDirection direction);
/** Uniquely encodes both the type of this timeline and the skeleton property that it affects. */
public int getPropertyId ();
}
/** Controls how a timeline value is mixed with the setup pose value or current pose value.
*
* See Timeline {@link Timeline#apply(Skeleton, float, float, Array, float, MixBlend, MixDirection)}. */
static public enum MixBlend {
/** Transitions from the setup value to the timeline value (the current value is not used). Before the first key, the setup
* value is set. */
setup,
/** Transitions from the current value to the timeline value. Before the first key, transitions from the current value to
* the setup value. Timelines which perform instant transitions, such as {@link DrawOrderTimeline} or
* {@link AttachmentTimeline}, use the setup value before the first key.
*
* first
is intended for the first animations applied, not for animations layered on top of those. */
first,
/** Transitions from the current value to the timeline value. No change is made before the first key (the current value is
* kept until the first key).
*
* replace
is intended for animations layered on top of others, not for the first animations applied. */
replace,
/** Transitions from the current value to the current value plus the timeline value. No change is made before the first key
* (the current value is kept until the first key).
*
* add
is intended for animations layered on top of others, not for the first animations applied. */
add
}
/** Indicates whether a timeline's alpha
is mixing out over time toward 0 (the setup or current pose value) or
* mixing in toward 1 (the timeline's value).
*
* See Timeline {@link Timeline#apply(Skeleton, float, float, Array, float, MixBlend, MixDirection)}. */
static public enum MixDirection {
in, out
}
static private enum TimelineType {
rotate, translate, scale, shear, //
attachment, color, deform, //
event, drawOrder, //
ikConstraint, transformConstraint, //
pathConstraintPosition, pathConstraintSpacing, pathConstraintMix, //
twoColor
}
/** An interface for timelines which change the property of a bone. */
static public interface BoneTimeline extends Timeline {
public void setBoneIndex (int index);
/** The index of the bone in {@link Skeleton#getBones()} that will be changed. */
public int getBoneIndex ();
}
/** An interface for timelines which change the property of a slot. */
static public interface SlotTimeline extends Timeline {
public void setSlotIndex (int index);
/** The index of the slot in {@link Skeleton#getSlots()} that will be changed. */
public int getSlotIndex ();
}
/** The base class for timelines that use interpolation between key frame values. */
abstract static public class CurveTimeline implements Timeline {
static public final float LINEAR = 0, STEPPED = 1, BEZIER = 2;
static private final int BEZIER_SIZE = 10 * 2 - 1;
private final float[] curves; // type, x, y, ...
public CurveTimeline (int frameCount) {
if (frameCount <= 0) throw new IllegalArgumentException("frameCount must be > 0: " + frameCount);
curves = new float[(frameCount - 1) * BEZIER_SIZE];
}
/** The number of key frames for this timeline. */
public int getFrameCount () {
return curves.length / BEZIER_SIZE + 1;
}
/** Sets the specified key frame to linear interpolation. */
public void setLinear (int frameIndex) {
curves[frameIndex * BEZIER_SIZE] = LINEAR;
}
/** Sets the specified key frame to stepped interpolation. */
public void setStepped (int frameIndex) {
curves[frameIndex * BEZIER_SIZE] = STEPPED;
}
/** Returns the interpolation type for the specified key frame.
* @return Linear is 0, stepped is 1, Bezier is 2. */
public float getCurveType (int frameIndex) {
int index = frameIndex * BEZIER_SIZE;
if (index == curves.length) return LINEAR;
float type = curves[index];
if (type == LINEAR) return LINEAR;
if (type == STEPPED) return STEPPED;
return BEZIER;
}
/** Sets the specified key frame to Bezier interpolation. cx1
and cx2
are from 0 to 1,
* representing the percent of time between the two key frames. cy1
and cy2
are the percent of the
* difference between the key frame's values. */
public void setCurve (int frameIndex, float cx1, float cy1, float cx2, float cy2) {
float tmpx = (-cx1 * 2 + cx2) * 0.03f, tmpy = (-cy1 * 2 + cy2) * 0.03f;
float dddfx = ((cx1 - cx2) * 3 + 1) * 0.006f, dddfy = ((cy1 - cy2) * 3 + 1) * 0.006f;
float ddfx = tmpx * 2 + dddfx, ddfy = tmpy * 2 + dddfy;
float dfx = cx1 * 0.3f + tmpx + dddfx * 0.16666667f, dfy = cy1 * 0.3f + tmpy + dddfy * 0.16666667f;
int i = frameIndex * BEZIER_SIZE;
float[] curves = this.curves;
curves[i++] = BEZIER;
float x = dfx, y = dfy;
for (int n = i + BEZIER_SIZE - 1; i < n; i += 2) {
curves[i] = x;
curves[i + 1] = y;
dfx += ddfx;
dfy += ddfy;
ddfx += dddfx;
ddfy += dddfy;
x += dfx;
y += dfy;
}
}
/** Returns the interpolated percentage for the specified key frame and linear percentage. */
public float getCurvePercent (int frameIndex, float percent) {
percent = MathUtils.clamp(percent, 0, 1);
float[] curves = this.curves;
int i = frameIndex * BEZIER_SIZE;
float type = curves[i];
if (type == LINEAR) return percent;
if (type == STEPPED) return 0;
i++;
float x = 0;
for (int start = i, n = i + BEZIER_SIZE - 1; i < n; i += 2) {
x = curves[i];
if (x >= percent) {
if (i == start) return curves[i + 1] * percent / x; // First point is 0,0.
float prevX = curves[i - 2], prevY = curves[i - 1];
return prevY + (curves[i + 1] - prevY) * (percent - prevX) / (x - prevX);
}
}
float y = curves[i - 1];
return y + (1 - y) * (percent - x) / (1 - x); // Last point is 1,1.
}
}
/** Changes a bone's local {@link Bone#getRotation()}. */
static public class RotateTimeline extends CurveTimeline implements BoneTimeline {
static public final int ENTRIES = 2;
static final int PREV_TIME = -2, PREV_ROTATION = -1;
static final int ROTATION = 1;
int boneIndex;
final float[] frames; // time, degrees, ...
public RotateTimeline (int frameCount) {
super(frameCount);
frames = new float[frameCount << 1];
}
public int getPropertyId () {
return (TimelineType.rotate.ordinal() << 24) + boneIndex;
}
public void setBoneIndex (int index) {
if (index < 0) throw new IllegalArgumentException("index must be >= 0.");
this.boneIndex = index;
}
/** The index of the bone in {@link Skeleton#getBones()} that will be changed. */
public int getBoneIndex () {
return boneIndex;
}
/** The time in seconds and rotation in degrees for each key frame. */
public float[] getFrames () {
return frames;
}
/** Sets the time in seconds and the rotation in degrees for the specified key frame. */
public void setFrame (int frameIndex, float time, float degrees) {
frameIndex <<= 1;
frames[frameIndex] = time;
frames[frameIndex + ROTATION] = degrees;
}
public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha, MixBlend blend,
MixDirection direction) {
Bone bone = skeleton.bones.get(boneIndex);
float[] frames = this.frames;
if (time < frames[0]) { // Time is before first frame.
switch (blend) {
case setup:
bone.rotation = bone.data.rotation;
return;
case first:
float r = bone.data.rotation - bone.rotation;
bone.rotation += (r - (16384 - (int)(16384.499999999996 - r / 360)) * 360) * alpha;
}
return;
}
if (time >= frames[frames.length - ENTRIES]) { // Time is after last frame.
float r = frames[frames.length + PREV_ROTATION];
switch (blend) {
case setup:
bone.rotation = bone.data.rotation + r * alpha;
break;
case first:
case replace:
r += bone.data.rotation - bone.rotation;
r -= (16384 - (int)(16384.499999999996 - r / 360)) * 360;
// Fall through.
case add:
bone.rotation += r * alpha;
}
return;
}
// Interpolate between the previous frame and the current frame.
int frame = binarySearch(frames, time, ENTRIES);
float prevRotation = frames[frame + PREV_ROTATION];
float frameTime = frames[frame];
float percent = getCurvePercent((frame >> 1) - 1, 1 - (time - frameTime) / (frames[frame + PREV_TIME] - frameTime));
float r = frames[frame + ROTATION] - prevRotation;
r = prevRotation + (r - (16384 - (int)(16384.499999999996 - r / 360)) * 360) * percent;
switch (blend) {
case setup:
bone.rotation = bone.data.rotation + (r - (16384 - (int)(16384.499999999996 - r / 360)) * 360) * alpha;
break;
case first:
case replace:
r += bone.data.rotation - bone.rotation;
// Fall through.
case add:
bone.rotation += (r - (16384 - (int)(16384.499999999996 - r / 360)) * 360) * alpha;
}
}
}
/** Changes a bone's local {@link Bone#getX()} and {@link Bone#getY()}. */
static public class TranslateTimeline extends CurveTimeline implements BoneTimeline {
static public final int ENTRIES = 3;
static final int PREV_TIME = -3, PREV_X = -2, PREV_Y = -1;
static final int X = 1, Y = 2;
int boneIndex;
final float[] frames; // time, x, y, ...
public TranslateTimeline (int frameCount) {
super(frameCount);
frames = new float[frameCount * ENTRIES];
}
public int getPropertyId () {
return (TimelineType.translate.ordinal() << 24) + boneIndex;
}
public void setBoneIndex (int index) {
if (index < 0) throw new IllegalArgumentException("index must be >= 0.");
this.boneIndex = index;
}
/** The index of the bone in {@link Skeleton#getBones()} that will be changed. */
public int getBoneIndex () {
return boneIndex;
}
/** The time in seconds, x, and y values for each key frame. */
public float[] getFrames () {
return frames;
}
/** Sets the time in seconds, x, and y values for the specified key frame. */
public void setFrame (int frameIndex, float time, float x, float y) {
frameIndex *= ENTRIES;
frames[frameIndex] = time;
frames[frameIndex + X] = x;
frames[frameIndex + Y] = y;
}
public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha, MixBlend blend,
MixDirection direction) {
Bone bone = skeleton.bones.get(boneIndex);
float[] frames = this.frames;
if (time < frames[0]) { // Time is before first frame.
switch (blend) {
case setup:
bone.x = bone.data.x;
bone.y = bone.data.y;
return;
case first:
bone.x += (bone.data.x - bone.x) * alpha;
bone.y += (bone.data.y - bone.y) * alpha;
}
return;
}
float x, y;
if (time >= frames[frames.length - ENTRIES]) { // Time is after last frame.
x = frames[frames.length + PREV_X];
y = frames[frames.length + PREV_Y];
} else {
// Interpolate between the previous frame and the current frame.
int frame = binarySearch(frames, time, ENTRIES);
x = frames[frame + PREV_X];
y = frames[frame + PREV_Y];
float frameTime = frames[frame];
float percent = getCurvePercent(frame / ENTRIES - 1,
1 - (time - frameTime) / (frames[frame + PREV_TIME] - frameTime));
x += (frames[frame + X] - x) * percent;
y += (frames[frame + Y] - y) * percent;
}
switch (blend) {
case setup:
bone.x = bone.data.x + x * alpha;
bone.y = bone.data.y + y * alpha;
break;
case first:
case replace:
bone.x += (bone.data.x + x - bone.x) * alpha;
bone.y += (bone.data.y + y - bone.y) * alpha;
break;
case add:
bone.x += x * alpha;
bone.y += y * alpha;
}
}
}
/** Changes a bone's local {@link Bone#getScaleX()} and {@link Bone#getScaleY()}. */
static public class ScaleTimeline extends TranslateTimeline {
public ScaleTimeline (int frameCount) {
super(frameCount);
}
public int getPropertyId () {
return (TimelineType.scale.ordinal() << 24) + boneIndex;
}
public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha, MixBlend blend,
MixDirection direction) {
Bone bone = skeleton.bones.get(boneIndex);
float[] frames = this.frames;
if (time < frames[0]) { // Time is before first frame.
switch (blend) {
case setup:
bone.scaleX = bone.data.scaleX;
bone.scaleY = bone.data.scaleY;
return;
case first:
bone.scaleX += (bone.data.scaleX - bone.scaleX) * alpha;
bone.scaleY += (bone.data.scaleY - bone.scaleY) * alpha;
}
return;
}
float x, y;
if (time >= frames[frames.length - ENTRIES]) { // Time is after last frame.
x = frames[frames.length + PREV_X] * bone.data.scaleX;
y = frames[frames.length + PREV_Y] * bone.data.scaleY;
} else {
// Interpolate between the previous frame and the current frame.
int frame = binarySearch(frames, time, ENTRIES);
x = frames[frame + PREV_X];
y = frames[frame + PREV_Y];
float frameTime = frames[frame];
float percent = getCurvePercent(frame / ENTRIES - 1,
1 - (time - frameTime) / (frames[frame + PREV_TIME] - frameTime));
x = (x + (frames[frame + X] - x) * percent) * bone.data.scaleX;
y = (y + (frames[frame + Y] - y) * percent) * bone.data.scaleY;
}
if (alpha == 1) {
if (blend == add) {
bone.scaleX += x - bone.data.scaleX;
bone.scaleY += y - bone.data.scaleY;
} else {
bone.scaleX = x;
bone.scaleY = y;
}
} else {
// Mixing out uses sign of setup or current pose, else use sign of key.
float bx, by;
if (direction == out) {
switch (blend) {
case setup:
bx = bone.data.scaleX;
by = bone.data.scaleY;
bone.scaleX = bx + (Math.abs(x) * Math.signum(bx) - bx) * alpha;
bone.scaleY = by + (Math.abs(y) * Math.signum(by) - by) * alpha;
break;
case first:
case replace:
bx = bone.scaleX;
by = bone.scaleY;
bone.scaleX = bx + (Math.abs(x) * Math.signum(bx) - bx) * alpha;
bone.scaleY = by + (Math.abs(y) * Math.signum(by) - by) * alpha;
break;
case add:
bx = bone.scaleX;
by = bone.scaleY;
bone.scaleX = bx + (Math.abs(x) * Math.signum(bx) - bone.data.scaleX) * alpha;
bone.scaleY = by + (Math.abs(y) * Math.signum(by) - bone.data.scaleY) * alpha;
}
} else {
switch (blend) {
case setup:
bx = Math.abs(bone.data.scaleX) * Math.signum(x);
by = Math.abs(bone.data.scaleY) * Math.signum(y);
bone.scaleX = bx + (x - bx) * alpha;
bone.scaleY = by + (y - by) * alpha;
break;
case first:
case replace:
bx = Math.abs(bone.scaleX) * Math.signum(x);
by = Math.abs(bone.scaleY) * Math.signum(y);
bone.scaleX = bx + (x - bx) * alpha;
bone.scaleY = by + (y - by) * alpha;
break;
case add:
bx = Math.signum(x);
by = Math.signum(y);
bone.scaleX = Math.abs(bone.scaleX) * bx + (x - Math.abs(bone.data.scaleX) * bx) * alpha;
bone.scaleY = Math.abs(bone.scaleY) * by + (y - Math.abs(bone.data.scaleY) * by) * alpha;
}
}
}
}
}
/** Changes a bone's local {@link Bone#getShearX()} and {@link Bone#getShearY()}. */
static public class ShearTimeline extends TranslateTimeline {
public ShearTimeline (int frameCount) {
super(frameCount);
}
public int getPropertyId () {
return (TimelineType.shear.ordinal() << 24) + boneIndex;
}
public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha, MixBlend blend,
MixDirection direction) {
Bone bone = skeleton.bones.get(boneIndex);
float[] frames = this.frames;
if (time < frames[0]) { // Time is before first frame.
switch (blend) {
case setup:
bone.shearX = bone.data.shearX;
bone.shearY = bone.data.shearY;
return;
case first:
bone.shearX += (bone.data.shearX - bone.shearX) * alpha;
bone.shearY += (bone.data.shearY - bone.shearY) * alpha;
}
return;
}
float x, y;
if (time >= frames[frames.length - ENTRIES]) { // Time is after last frame.
x = frames[frames.length + PREV_X];
y = frames[frames.length + PREV_Y];
} else {
// Interpolate between the previous frame and the current frame.
int frame = binarySearch(frames, time, ENTRIES);
x = frames[frame + PREV_X];
y = frames[frame + PREV_Y];
float frameTime = frames[frame];
float percent = getCurvePercent(frame / ENTRIES - 1,
1 - (time - frameTime) / (frames[frame + PREV_TIME] - frameTime));
x = x + (frames[frame + X] - x) * percent;
y = y + (frames[frame + Y] - y) * percent;
}
switch (blend) {
case setup:
bone.shearX = bone.data.shearX + x * alpha;
bone.shearY = bone.data.shearY + y * alpha;
break;
case first:
case replace:
bone.shearX += (bone.data.shearX + x - bone.shearX) * alpha;
bone.shearY += (bone.data.shearY + y - bone.shearY) * alpha;
break;
case add:
bone.shearX += x * alpha;
bone.shearY += y * alpha;
}
}
}
/** Changes a slot's {@link Slot#getColor()}. */
static public class ColorTimeline extends CurveTimeline implements SlotTimeline {
static public final int ENTRIES = 5;
static private final int PREV_TIME = -5, PREV_R = -4, PREV_G = -3, PREV_B = -2, PREV_A = -1;
static private final int R = 1, G = 2, B = 3, A = 4;
int slotIndex;
private final float[] frames; // time, r, g, b, a, ...
public ColorTimeline (int frameCount) {
super(frameCount);
frames = new float[frameCount * ENTRIES];
}
public int getPropertyId () {
return (TimelineType.color.ordinal() << 24) + slotIndex;
}
public void setSlotIndex (int index) {
if (index < 0) throw new IllegalArgumentException("index must be >= 0.");
this.slotIndex = index;
}
/** The index of the slot in {@link Skeleton#getSlots()} that will be changed. */
public int getSlotIndex () {
return slotIndex;
}
/** The time in seconds, red, green, blue, and alpha values for each key frame. */
public float[] getFrames () {
return frames;
}
/** Sets the time in seconds, red, green, blue, and alpha for the specified key frame. */
public void setFrame (int frameIndex, float time, float r, float g, float b, float a) {
frameIndex *= ENTRIES;
frames[frameIndex] = time;
frames[frameIndex + R] = r;
frames[frameIndex + G] = g;
frames[frameIndex + B] = b;
frames[frameIndex + A] = a;
}
public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha, MixBlend blend,
MixDirection direction) {
Slot slot = skeleton.slots.get(slotIndex);
float[] frames = this.frames;
if (time < frames[0]) { // Time is before first frame.
switch (blend) {
case setup:
slot.color.set(slot.data.color);
return;
case first:
Color color = slot.color, setup = slot.data.color;
color.add((setup.r - color.r) * alpha, (setup.g - color.g) * alpha, (setup.b - color.b) * alpha,
(setup.a - color.a) * alpha);
}
return;
}
float r, g, b, a;
if (time >= frames[frames.length - ENTRIES]) { // Time is after last frame.
int i = frames.length;
r = frames[i + PREV_R];
g = frames[i + PREV_G];
b = frames[i + PREV_B];
a = frames[i + PREV_A];
} else {
// Interpolate between the previous frame and the current frame.
int frame = binarySearch(frames, time, ENTRIES);
r = frames[frame + PREV_R];
g = frames[frame + PREV_G];
b = frames[frame + PREV_B];
a = frames[frame + PREV_A];
float frameTime = frames[frame];
float percent = getCurvePercent(frame / ENTRIES - 1,
1 - (time - frameTime) / (frames[frame + PREV_TIME] - frameTime));
r += (frames[frame + R] - r) * percent;
g += (frames[frame + G] - g) * percent;
b += (frames[frame + B] - b) * percent;
a += (frames[frame + A] - a) * percent;
}
if (alpha == 1)
slot.color.set(r, g, b, a);
else {
Color color = slot.color;
if (blend == setup) color.set(slot.data.color);
color.add((r - color.r) * alpha, (g - color.g) * alpha, (b - color.b) * alpha, (a - color.a) * alpha);
}
}
}
/** Changes a slot's {@link Slot#getColor()} and {@link Slot#getDarkColor()} for two color tinting. */
static public class TwoColorTimeline extends CurveTimeline implements SlotTimeline {
static public final int ENTRIES = 8;
static private final int PREV_TIME = -8, PREV_R = -7, PREV_G = -6, PREV_B = -5, PREV_A = -4;
static private final int PREV_R2 = -3, PREV_G2 = -2, PREV_B2 = -1;
static private final int R = 1, G = 2, B = 3, A = 4, R2 = 5, G2 = 6, B2 = 7;
int slotIndex;
private final float[] frames; // time, r, g, b, a, r2, g2, b2, ...
public TwoColorTimeline (int frameCount) {
super(frameCount);
frames = new float[frameCount * ENTRIES];
}
public int getPropertyId () {
return (TimelineType.twoColor.ordinal() << 24) + slotIndex;
}
public void setSlotIndex (int index) {
if (index < 0) throw new IllegalArgumentException("index must be >= 0.");
this.slotIndex = index;
}
/** The index of the slot in {@link Skeleton#getSlots()} that will be changed. */
public int getSlotIndex () {
return slotIndex;
}
/** The time in seconds, red, green, blue, and alpha values for each key frame. */
public float[] getFrames () {
return frames;
}
/** Sets the time in seconds, light, and dark colors for the specified key frame. */
public void setFrame (int frameIndex, float time, float r, float g, float b, float a, float r2, float g2, float b2) {
frameIndex *= ENTRIES;
frames[frameIndex] = time;
frames[frameIndex + R] = r;
frames[frameIndex + G] = g;
frames[frameIndex + B] = b;
frames[frameIndex + A] = a;
frames[frameIndex + R2] = r2;
frames[frameIndex + G2] = g2;
frames[frameIndex + B2] = b2;
}
public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha, MixBlend blend,
MixDirection direction) {
Slot slot = skeleton.slots.get(slotIndex);
float[] frames = this.frames;
if (time < frames[0]) { // Time is before first frame.
switch (blend) {
case setup:
slot.color.set(slot.data.color);
slot.darkColor.set(slot.data.darkColor);
return;
case first:
Color light = slot.color, dark = slot.darkColor, setupLight = slot.data.color, setupDark = slot.data.darkColor;
light.add((setupLight.r - light.r) * alpha, (setupLight.g - light.g) * alpha, (setupLight.b - light.b) * alpha,
(setupLight.a - light.a) * alpha);
dark.add((setupDark.r - dark.r) * alpha, (setupDark.g - dark.g) * alpha, (setupDark.b - dark.b) * alpha, 0);
}
return;
}
float r, g, b, a, r2, g2, b2;
if (time >= frames[frames.length - ENTRIES]) { // Time is after last frame.
int i = frames.length;
r = frames[i + PREV_R];
g = frames[i + PREV_G];
b = frames[i + PREV_B];
a = frames[i + PREV_A];
r2 = frames[i + PREV_R2];
g2 = frames[i + PREV_G2];
b2 = frames[i + PREV_B2];
} else {
// Interpolate between the previous frame and the current frame.
int frame = binarySearch(frames, time, ENTRIES);
r = frames[frame + PREV_R];
g = frames[frame + PREV_G];
b = frames[frame + PREV_B];
a = frames[frame + PREV_A];
r2 = frames[frame + PREV_R2];
g2 = frames[frame + PREV_G2];
b2 = frames[frame + PREV_B2];
float frameTime = frames[frame];
float percent = getCurvePercent(frame / ENTRIES - 1,
1 - (time - frameTime) / (frames[frame + PREV_TIME] - frameTime));
r += (frames[frame + R] - r) * percent;
g += (frames[frame + G] - g) * percent;
b += (frames[frame + B] - b) * percent;
a += (frames[frame + A] - a) * percent;
r2 += (frames[frame + R2] - r2) * percent;
g2 += (frames[frame + G2] - g2) * percent;
b2 += (frames[frame + B2] - b2) * percent;
}
if (alpha == 1) {
slot.color.set(r, g, b, a);
slot.darkColor.set(r2, g2, b2, 1);
} else {
Color light = slot.color, dark = slot.darkColor;
if (blend == setup) {
light.set(slot.data.color);
dark.set(slot.data.darkColor);
}
light.add((r - light.r) * alpha, (g - light.g) * alpha, (b - light.b) * alpha, (a - light.a) * alpha);
dark.add((r2 - dark.r) * alpha, (g2 - dark.g) * alpha, (b2 - dark.b) * alpha, 0);
}
}
}
/** Changes a slot's {@link Slot#getAttachment()}. */
static public class AttachmentTimeline implements SlotTimeline {
int slotIndex;
final float[] frames; // time, ...
final String[] attachmentNames;
public AttachmentTimeline (int frameCount) {
frames = new float[frameCount];
attachmentNames = new String[frameCount];
}
public int getPropertyId () {
return (TimelineType.attachment.ordinal() << 24) + slotIndex;
}
/** The number of key frames for this timeline. */
public int getFrameCount () {
return frames.length;
}
public void setSlotIndex (int index) {
if (index < 0) throw new IllegalArgumentException("index must be >= 0.");
this.slotIndex = index;
}
/** The index of the slot in {@link Skeleton#getSlots()} that will be changed. */
public int getSlotIndex () {
return slotIndex;
}
/** The time in seconds for each key frame. */
public float[] getFrames () {
return frames;
}
/** The attachment name for each key frame. May contain null values to clear the attachment. */
public String[] getAttachmentNames () {
return attachmentNames;
}
/** Sets the time in seconds and the attachment name for the specified key frame. */
public void setFrame (int frameIndex, float time, String attachmentName) {
frames[frameIndex] = time;
attachmentNames[frameIndex] = attachmentName;
}
public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha, MixBlend blend,
MixDirection direction) {
Slot slot = skeleton.slots.get(slotIndex);
if (direction == out && blend == setup) {
String attachmentName = slot.data.attachmentName;
slot.setAttachment(attachmentName == null ? null : skeleton.getAttachment(slotIndex, attachmentName));
return;
}
float[] frames = this.frames;
if (time < frames[0]) { // Time is before first frame.
if (blend == setup || blend == first) {
String attachmentName = slot.data.attachmentName;
slot.setAttachment(attachmentName == null ? null : skeleton.getAttachment(slotIndex, attachmentName));
}
return;
}
int frameIndex;
if (time >= frames[frames.length - 1]) // Time is after last frame.
frameIndex = frames.length - 1;
else
frameIndex = binarySearch(frames, time) - 1;
String attachmentName = attachmentNames[frameIndex];
slot.setAttachment(attachmentName == null ? null : skeleton.getAttachment(slotIndex, attachmentName));
}
}
/** Changes a slot's {@link Slot#getAttachmentVertices()} to deform a {@link VertexAttachment}. */
static public class DeformTimeline extends CurveTimeline implements SlotTimeline {
int slotIndex;
VertexAttachment attachment;
private final float[] frames; // time, ...
private final float[][] frameVertices;
public DeformTimeline (int frameCount) {
super(frameCount);
frames = new float[frameCount];
frameVertices = new float[frameCount][];
}
public int getPropertyId () {
return (TimelineType.deform.ordinal() << 27) + attachment.getId() + slotIndex;
}
public void setSlotIndex (int index) {
if (index < 0) throw new IllegalArgumentException("index must be >= 0.");
this.slotIndex = index;
}
/** The index of the slot in {@link Skeleton#getSlots()} that will be changed. */
public int getSlotIndex () {
return slotIndex;
}
public void setAttachment (VertexAttachment attachment) {
this.attachment = attachment;
}
/** The attachment that will be deformed. */
public VertexAttachment getAttachment () {
return attachment;
}
/** The time in seconds for each key frame. */
public float[] getFrames () {
return frames;
}
/** The vertices for each key frame. */
public float[][] getVertices () {
return frameVertices;
}
/** Sets the time in seconds and the vertices for the specified key frame.
* @param vertices Vertex positions for an unweighted VertexAttachment, or deform offsets if it has weights. */
public void setFrame (int frameIndex, float time, float[] vertices) {
frames[frameIndex] = time;
frameVertices[frameIndex] = vertices;
}
public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha, MixBlend blend,
MixDirection direction) {
Slot slot = skeleton.slots.get(slotIndex);
Attachment slotAttachment = slot.attachment;
if (!(slotAttachment instanceof VertexAttachment) || !((VertexAttachment)slotAttachment).applyDeform(attachment)) return;
FloatArray verticesArray = slot.getAttachmentVertices();
if (verticesArray.size == 0) blend = setup;
float[][] frameVertices = this.frameVertices;
int vertexCount = frameVertices[0].length;
float[] frames = this.frames;
if (time < frames[0]) { // Time is before first frame.
VertexAttachment vertexAttachment = (VertexAttachment)slotAttachment;
switch (blend) {
case setup:
verticesArray.clear();
return;
case first:
if (alpha == 1) {
verticesArray.clear();
return;
}
float[] vertices = verticesArray.setSize(vertexCount);
if (vertexAttachment.getBones() == null) {
// Unweighted vertex positions.
float[] setupVertices = vertexAttachment.getVertices();
for (int i = 0; i < vertexCount; i++)
vertices[i] += (setupVertices[i] - vertices[i]) * alpha;
} else {
// Weighted deform offsets.
alpha = 1 - alpha;
for (int i = 0; i < vertexCount; i++)
vertices[i] *= alpha;
}
}
return;
}
float[] vertices = verticesArray.setSize(vertexCount);
if (time >= frames[frames.length - 1]) { // Time is after last frame.
float[] lastVertices = frameVertices[frames.length - 1];
if (alpha == 1) {
if (blend == add) {
VertexAttachment vertexAttachment = (VertexAttachment)slotAttachment;
if (vertexAttachment.getBones() == null) {
// Unweighted vertex positions, no alpha.
float[] setupVertices = vertexAttachment.getVertices();
for (int i = 0; i < vertexCount; i++)
vertices[i] += lastVertices[i] - setupVertices[i];
} else {
// Weighted deform offsets, no alpha.
for (int i = 0; i < vertexCount; i++)
vertices[i] += lastVertices[i];
}
} else {
// Vertex positions or deform offsets, no alpha.
System.arraycopy(lastVertices, 0, vertices, 0, vertexCount);
}
} else {
switch (blend) {
case setup: {
VertexAttachment vertexAttachment = (VertexAttachment)slotAttachment;
if (vertexAttachment.getBones() == null) {
// Unweighted vertex positions, with alpha.
float[] setupVertices = vertexAttachment.getVertices();
for (int i = 0; i < vertexCount; i++) {
float setup = setupVertices[i];
vertices[i] = setup + (lastVertices[i] - setup) * alpha;
}
} else {
// Weighted deform offsets, with alpha.
for (int i = 0; i < vertexCount; i++)
vertices[i] = lastVertices[i] * alpha;
}
break;
}
case first:
case replace:
// Vertex positions or deform offsets, with alpha.
for (int i = 0; i < vertexCount; i++)
vertices[i] += (lastVertices[i] - vertices[i]) * alpha;
break;
case add:
VertexAttachment vertexAttachment = (VertexAttachment)slotAttachment;
if (vertexAttachment.getBones() == null) {
// Unweighted vertex positions, no alpha.
float[] setupVertices = vertexAttachment.getVertices();
for (int i = 0; i < vertexCount; i++)
vertices[i] += (lastVertices[i] - setupVertices[i]) * alpha;
} else {
// Weighted deform offsets, alpha.
for (int i = 0; i < vertexCount; i++)
vertices[i] += lastVertices[i] * alpha;
}
}
}
return;
}
// Interpolate between the previous frame and the current frame.
int frame = binarySearch(frames, time);
float[] prevVertices = frameVertices[frame - 1];
float[] nextVertices = frameVertices[frame];
float frameTime = frames[frame];
float percent = getCurvePercent(frame - 1, 1 - (time - frameTime) / (frames[frame - 1] - frameTime));
if (alpha == 1) {
if (blend == add) {
VertexAttachment vertexAttachment = (VertexAttachment)slotAttachment;
if (vertexAttachment.getBones() == null) {
// Unweighted vertex positions, no alpha.
float[] setupVertices = vertexAttachment.getVertices();
for (int i = 0; i < vertexCount; i++) {
float prev = prevVertices[i];
vertices[i] += prev + (nextVertices[i] - prev) * percent - setupVertices[i];
}
} else {
// Weighted deform offsets, no alpha.
for (int i = 0; i < vertexCount; i++) {
float prev = prevVertices[i];
vertices[i] += prev + (nextVertices[i] - prev) * percent;
}
}
} else {
// Vertex positions or deform offsets, no alpha.
for (int i = 0; i < vertexCount; i++) {
float prev = prevVertices[i];
vertices[i] = prev + (nextVertices[i] - prev) * percent;
}
}
} else {
switch (blend) {
case setup: {
VertexAttachment vertexAttachment = (VertexAttachment)slotAttachment;
if (vertexAttachment.getBones() == null) {
// Unweighted vertex positions, with alpha.
float[] setupVertices = vertexAttachment.getVertices();
for (int i = 0; i < vertexCount; i++) {
float prev = prevVertices[i], setup = setupVertices[i];
vertices[i] = setup + (prev + (nextVertices[i] - prev) * percent - setup) * alpha;
}
} else {
// Weighted deform offsets, with alpha.
for (int i = 0; i < vertexCount; i++) {
float prev = prevVertices[i];
vertices[i] = (prev + (nextVertices[i] - prev) * percent) * alpha;
}
}
break;
}
case first:
case replace:
// Vertex positions or deform offsets, with alpha.
for (int i = 0; i < vertexCount; i++) {
float prev = prevVertices[i];
vertices[i] += (prev + (nextVertices[i] - prev) * percent - vertices[i]) * alpha;
}
break;
case add:
VertexAttachment vertexAttachment = (VertexAttachment)slotAttachment;
if (vertexAttachment.getBones() == null) {
// Unweighted vertex positions, with alpha.
float[] setupVertices = vertexAttachment.getVertices();
for (int i = 0; i < vertexCount; i++) {
float prev = prevVertices[i];
vertices[i] += (prev + (nextVertices[i] - prev) * percent - setupVertices[i]) * alpha;
}
} else {
// Weighted deform offsets, with alpha.
for (int i = 0; i < vertexCount; i++) {
float prev = prevVertices[i];
vertices[i] += (prev + (nextVertices[i] - prev) * percent) * alpha;
}
}
}
}
}
}
/** Fires an {@link Event} when specific animation times are reached. */
static public class EventTimeline implements Timeline {
private final float[] frames; // time, ...
private final Event[] events;
public EventTimeline (int frameCount) {
frames = new float[frameCount];
events = new Event[frameCount];
}
public int getPropertyId () {
return TimelineType.event.ordinal() << 24;
}
/** The number of key frames for this timeline. */
public int getFrameCount () {
return frames.length;
}
/** The time in seconds for each key frame. */
public float[] getFrames () {
return frames;
}
/** The event for each key frame. */
public Event[] getEvents () {
return events;
}
/** Sets the time in seconds and the event for the specified key frame. */
public void setFrame (int frameIndex, Event event) {
frames[frameIndex] = event.time;
events[frameIndex] = event;
}
/** Fires events for frames > lastTime
and <= time
. */
public void apply (Skeleton skeleton, float lastTime, float time, Array firedEvents, float alpha, MixBlend blend,
MixDirection direction) {
if (firedEvents == null) return;
float[] frames = this.frames;
int frameCount = frames.length;
if (lastTime > time) { // Fire events after last time for looped animations.
apply(skeleton, lastTime, Integer.MAX_VALUE, firedEvents, alpha, blend, direction);
lastTime = -1f;
} else if (lastTime >= frames[frameCount - 1]) // Last time is after last frame.
return;
if (time < frames[0]) return; // Time is before first frame.
int frame;
if (lastTime < frames[0])
frame = 0;
else {
frame = binarySearch(frames, lastTime);
float frameTime = frames[frame];
while (frame > 0) { // Fire multiple events with the same frame.
if (frames[frame - 1] != frameTime) break;
frame--;
}
}
for (; frame < frameCount && time >= frames[frame]; frame++)
firedEvents.add(events[frame]);
}
}
/** Changes a skeleton's {@link Skeleton#getDrawOrder()}. */
static public class DrawOrderTimeline implements Timeline {
private final float[] frames; // time, ...
private final int[][] drawOrders;
public DrawOrderTimeline (int frameCount) {
frames = new float[frameCount];
drawOrders = new int[frameCount][];
}
public int getPropertyId () {
return TimelineType.drawOrder.ordinal() << 24;
}
/** The number of key frames for this timeline. */
public int getFrameCount () {
return frames.length;
}
/** The time in seconds for each key frame. */
public float[] getFrames () {
return frames;
}
/** The draw order for each key frame. See {@link #setFrame(int, float, int[])}. */
public int[][] getDrawOrders () {
return drawOrders;
}
/** Sets the time in seconds and the draw order for the specified key frame.
* @param drawOrder For each slot in {@link Skeleton#slots}, the index of the new draw order. May be null to use setup pose
* draw order. */
public void setFrame (int frameIndex, float time, int[] drawOrder) {
frames[frameIndex] = time;
drawOrders[frameIndex] = drawOrder;
}
public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha, MixBlend blend,
MixDirection direction) {
Array drawOrder = skeleton.drawOrder;
Array slots = skeleton.slots;
if (direction == out && blend == setup) {
System.arraycopy(slots.items, 0, drawOrder.items, 0, slots.size);
return;
}
float[] frames = this.frames;
if (time < frames[0]) { // Time is before first frame.
if (blend == setup || blend == first) System.arraycopy(slots.items, 0, drawOrder.items, 0, slots.size);
return;
}
int frame;
if (time >= frames[frames.length - 1]) // Time is after last frame.
frame = frames.length - 1;
else
frame = binarySearch(frames, time) - 1;
int[] drawOrderToSetupIndex = drawOrders[frame];
if (drawOrderToSetupIndex == null)
System.arraycopy(slots.items, 0, drawOrder.items, 0, slots.size);
else {
for (int i = 0, n = drawOrderToSetupIndex.length; i < n; i++)
drawOrder.set(i, slots.get(drawOrderToSetupIndex[i]));
}
}
}
/** Changes an IK constraint's {@link IkConstraint#getMix()}, {@link IkConstraint#getBendDirection()},
* {@link IkConstraint#getStretch()}, and {@link IkConstraint#getCompress()}. */
static public class IkConstraintTimeline extends CurveTimeline {
static public final int ENTRIES = 5;
static private final int PREV_TIME = -5, PREV_MIX = -4, PREV_BEND_DIRECTION = -3, PREV_COMPRESS = -2, PREV_STRETCH = -1;
static private final int MIX = 1, BEND_DIRECTION = 2, COMPRESS = 3, STRETCH = 4;
int ikConstraintIndex;
private final float[] frames; // time, mix, bendDirection, compress, stretch, ...
public IkConstraintTimeline (int frameCount) {
super(frameCount);
frames = new float[frameCount * ENTRIES];
}
public int getPropertyId () {
return (TimelineType.ikConstraint.ordinal() << 24) + ikConstraintIndex;
}
public void setIkConstraintIndex (int index) {
if (index < 0) throw new IllegalArgumentException("index must be >= 0.");
this.ikConstraintIndex = index;
}
/** The index of the IK constraint slot in {@link Skeleton#getIkConstraints()} that will be changed. */
public int getIkConstraintIndex () {
return ikConstraintIndex;
}
/** The time in seconds, mix, bend direction, compress, and stretch for each key frame. */
public float[] getFrames () {
return frames;
}
/** Sets the time in seconds, mix, bend direction, compress, and stretch for the specified key frame. */
public void setFrame (int frameIndex, float time, float mix, int bendDirection, boolean compress, boolean stretch) {
frameIndex *= ENTRIES;
frames[frameIndex] = time;
frames[frameIndex + MIX] = mix;
frames[frameIndex + BEND_DIRECTION] = bendDirection;
frames[frameIndex + COMPRESS] = compress ? 1 : 0;
frames[frameIndex + STRETCH] = stretch ? 1 : 0;
}
public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha, MixBlend blend,
MixDirection direction) {
IkConstraint constraint = skeleton.ikConstraints.get(ikConstraintIndex);
float[] frames = this.frames;
if (time < frames[0]) { // Time is before first frame.
switch (blend) {
case setup:
constraint.mix = constraint.data.mix;
constraint.bendDirection = constraint.data.bendDirection;
constraint.compress = constraint.data.compress;
constraint.stretch = constraint.data.stretch;
return;
case first:
constraint.mix += (constraint.data.mix - constraint.mix) * alpha;
constraint.bendDirection = constraint.data.bendDirection;
constraint.compress = constraint.data.compress;
constraint.stretch = constraint.data.stretch;
}
return;
}
if (time >= frames[frames.length - ENTRIES]) { // Time is after last frame.
if (blend == setup) {
constraint.mix = constraint.data.mix + (frames[frames.length + PREV_MIX] - constraint.data.mix) * alpha;
if (direction == out) {
constraint.bendDirection = constraint.data.bendDirection;
constraint.compress = constraint.data.compress;
constraint.stretch = constraint.data.stretch;
} else {
constraint.bendDirection = (int)frames[frames.length + PREV_BEND_DIRECTION];
constraint.compress = frames[frames.length + PREV_COMPRESS] != 0;
constraint.stretch = frames[frames.length + PREV_STRETCH] != 0;
}
} else {
constraint.mix += (frames[frames.length + PREV_MIX] - constraint.mix) * alpha;
if (direction == in) {
constraint.bendDirection = (int)frames[frames.length + PREV_BEND_DIRECTION];
constraint.compress = frames[frames.length + PREV_COMPRESS] != 0;
constraint.stretch = frames[frames.length + PREV_STRETCH] != 0;
}
}
return;
}
// Interpolate between the previous frame and the current frame.
int frame = binarySearch(frames, time, ENTRIES);
float mix = frames[frame + PREV_MIX];
float frameTime = frames[frame];
float percent = getCurvePercent(frame / ENTRIES - 1, 1 - (time - frameTime) / (frames[frame + PREV_TIME] - frameTime));
if (blend == setup) {
constraint.mix = constraint.data.mix + (mix + (frames[frame + MIX] - mix) * percent - constraint.data.mix) * alpha;
if (direction == out) {
constraint.bendDirection = constraint.data.bendDirection;
constraint.compress = constraint.data.compress;
constraint.stretch = constraint.data.stretch;
} else {
constraint.bendDirection = (int)frames[frame + PREV_BEND_DIRECTION];
constraint.compress = frames[frame + PREV_COMPRESS] != 0;
constraint.stretch = frames[frame + PREV_STRETCH] != 0;
}
} else {
constraint.mix += (mix + (frames[frame + MIX] - mix) * percent - constraint.mix) * alpha;
if (direction == in) {
constraint.bendDirection = (int)frames[frame + PREV_BEND_DIRECTION];
constraint.compress = frames[frame + PREV_COMPRESS] != 0;
constraint.stretch = frames[frame + PREV_STRETCH] != 0;
}
}
}
}
/** Changes a transform constraint's mixes. */
static public class TransformConstraintTimeline extends CurveTimeline {
static public final int ENTRIES = 5;
static private final int PREV_TIME = -5, PREV_ROTATE = -4, PREV_TRANSLATE = -3, PREV_SCALE = -2, PREV_SHEAR = -1;
static private final int ROTATE = 1, TRANSLATE = 2, SCALE = 3, SHEAR = 4;
int transformConstraintIndex;
private final float[] frames; // time, rotate mix, translate mix, scale mix, shear mix, ...
public TransformConstraintTimeline (int frameCount) {
super(frameCount);
frames = new float[frameCount * ENTRIES];
}
public int getPropertyId () {
return (TimelineType.transformConstraint.ordinal() << 24) + transformConstraintIndex;
}
public void setTransformConstraintIndex (int index) {
if (index < 0) throw new IllegalArgumentException("index must be >= 0.");
this.transformConstraintIndex = index;
}
/** The index of the transform constraint slot in {@link Skeleton#getTransformConstraints()} that will be changed. */
public int getTransformConstraintIndex () {
return transformConstraintIndex;
}
/** The time in seconds, rotate mix, translate mix, scale mix, and shear mix for each key frame. */
public float[] getFrames () {
return frames;
}
/** The time in seconds, rotate mix, translate mix, scale mix, and shear mix for the specified key frame. */
public void setFrame (int frameIndex, float time, float rotateMix, float translateMix, float scaleMix, float shearMix) {
frameIndex *= ENTRIES;
frames[frameIndex] = time;
frames[frameIndex + ROTATE] = rotateMix;
frames[frameIndex + TRANSLATE] = translateMix;
frames[frameIndex + SCALE] = scaleMix;
frames[frameIndex + SHEAR] = shearMix;
}
public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha, MixBlend blend,
MixDirection direction) {
TransformConstraint constraint = skeleton.transformConstraints.get(transformConstraintIndex);
float[] frames = this.frames;
if (time < frames[0]) { // Time is before first frame.
TransformConstraintData data = constraint.data;
switch (blend) {
case setup:
constraint.rotateMix = data.rotateMix;
constraint.translateMix = data.translateMix;
constraint.scaleMix = data.scaleMix;
constraint.shearMix = data.shearMix;
return;
case first:
constraint.rotateMix += (data.rotateMix - constraint.rotateMix) * alpha;
constraint.translateMix += (data.translateMix - constraint.translateMix) * alpha;
constraint.scaleMix += (data.scaleMix - constraint.scaleMix) * alpha;
constraint.shearMix += (data.shearMix - constraint.shearMix) * alpha;
}
return;
}
float rotate, translate, scale, shear;
if (time >= frames[frames.length - ENTRIES]) { // Time is after last frame.
int i = frames.length;
rotate = frames[i + PREV_ROTATE];
translate = frames[i + PREV_TRANSLATE];
scale = frames[i + PREV_SCALE];
shear = frames[i + PREV_SHEAR];
} else {
// Interpolate between the previous frame and the current frame.
int frame = binarySearch(frames, time, ENTRIES);
rotate = frames[frame + PREV_ROTATE];
translate = frames[frame + PREV_TRANSLATE];
scale = frames[frame + PREV_SCALE];
shear = frames[frame + PREV_SHEAR];
float frameTime = frames[frame];
float percent = getCurvePercent(frame / ENTRIES - 1,
1 - (time - frameTime) / (frames[frame + PREV_TIME] - frameTime));
rotate += (frames[frame + ROTATE] - rotate) * percent;
translate += (frames[frame + TRANSLATE] - translate) * percent;
scale += (frames[frame + SCALE] - scale) * percent;
shear += (frames[frame + SHEAR] - shear) * percent;
}
if (blend == setup) {
TransformConstraintData data = constraint.data;
constraint.rotateMix = data.rotateMix + (rotate - data.rotateMix) * alpha;
constraint.translateMix = data.translateMix + (translate - data.translateMix) * alpha;
constraint.scaleMix = data.scaleMix + (scale - data.scaleMix) * alpha;
constraint.shearMix = data.shearMix + (shear - data.shearMix) * alpha;
} else {
constraint.rotateMix += (rotate - constraint.rotateMix) * alpha;
constraint.translateMix += (translate - constraint.translateMix) * alpha;
constraint.scaleMix += (scale - constraint.scaleMix) * alpha;
constraint.shearMix += (shear - constraint.shearMix) * alpha;
}
}
}
/** Changes a path constraint's {@link PathConstraint#getPosition()}. */
static public class PathConstraintPositionTimeline extends CurveTimeline {
static public final int ENTRIES = 2;
static final int PREV_TIME = -2, PREV_VALUE = -1;
static final int VALUE = 1;
int pathConstraintIndex;
final float[] frames; // time, position, ...
public PathConstraintPositionTimeline (int frameCount) {
super(frameCount);
frames = new float[frameCount * ENTRIES];
}
public int getPropertyId () {
return (TimelineType.pathConstraintPosition.ordinal() << 24) + pathConstraintIndex;
}
public void setPathConstraintIndex (int index) {
if (index < 0) throw new IllegalArgumentException("index must be >= 0.");
this.pathConstraintIndex = index;
}
/** The index of the path constraint slot in {@link Skeleton#getPathConstraints()} that will be changed. */
public int getPathConstraintIndex () {
return pathConstraintIndex;
}
/** The time in seconds and path constraint position for each key frame. */
public float[] getFrames () {
return frames;
}
/** Sets the time in seconds and path constraint position for the specified key frame. */
public void setFrame (int frameIndex, float time, float position) {
frameIndex *= ENTRIES;
frames[frameIndex] = time;
frames[frameIndex + VALUE] = position;
}
public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha, MixBlend blend,
MixDirection direction) {
PathConstraint constraint = skeleton.pathConstraints.get(pathConstraintIndex);
float[] frames = this.frames;
if (time < frames[0]) { // Time is before first frame.
switch (blend) {
case setup:
constraint.position = constraint.data.position;
return;
case first:
constraint.position += (constraint.data.position - constraint.position) * alpha;
}
return;
}
float position;
if (time >= frames[frames.length - ENTRIES]) // Time is after last frame.
position = frames[frames.length + PREV_VALUE];
else {
// Interpolate between the previous frame and the current frame.
int frame = binarySearch(frames, time, ENTRIES);
position = frames[frame + PREV_VALUE];
float frameTime = frames[frame];
float percent = getCurvePercent(frame / ENTRIES - 1,
1 - (time - frameTime) / (frames[frame + PREV_TIME] - frameTime));
position += (frames[frame + VALUE] - position) * percent;
}
if (blend == setup)
constraint.position = constraint.data.position + (position - constraint.data.position) * alpha;
else
constraint.position += (position - constraint.position) * alpha;
}
}
/** Changes a path constraint's {@link PathConstraint#getSpacing()}. */
static public class PathConstraintSpacingTimeline extends PathConstraintPositionTimeline {
public PathConstraintSpacingTimeline (int frameCount) {
super(frameCount);
}
public int getPropertyId () {
return (TimelineType.pathConstraintSpacing.ordinal() << 24) + pathConstraintIndex;
}
public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha, MixBlend blend,
MixDirection direction) {
PathConstraint constraint = skeleton.pathConstraints.get(pathConstraintIndex);
float[] frames = this.frames;
if (time < frames[0]) { // Time is before first frame.
switch (blend) {
case setup:
constraint.spacing = constraint.data.spacing;
return;
case first:
constraint.spacing += (constraint.data.spacing - constraint.spacing) * alpha;
}
return;
}
float spacing;
if (time >= frames[frames.length - ENTRIES]) // Time is after last frame.
spacing = frames[frames.length + PREV_VALUE];
else {
// Interpolate between the previous frame and the current frame.
int frame = binarySearch(frames, time, ENTRIES);
spacing = frames[frame + PREV_VALUE];
float frameTime = frames[frame];
float percent = getCurvePercent(frame / ENTRIES - 1,
1 - (time - frameTime) / (frames[frame + PREV_TIME] - frameTime));
spacing += (frames[frame + VALUE] - spacing) * percent;
}
if (blend == setup)
constraint.spacing = constraint.data.spacing + (spacing - constraint.data.spacing) * alpha;
else
constraint.spacing += (spacing - constraint.spacing) * alpha;
}
}
/** Changes a path constraint's mixes. */
static public class PathConstraintMixTimeline extends CurveTimeline {
static public final int ENTRIES = 3;
static private final int PREV_TIME = -3, PREV_ROTATE = -2, PREV_TRANSLATE = -1;
static private final int ROTATE = 1, TRANSLATE = 2;
int pathConstraintIndex;
private final float[] frames; // time, rotate mix, translate mix, ...
public PathConstraintMixTimeline (int frameCount) {
super(frameCount);
frames = new float[frameCount * ENTRIES];
}
public int getPropertyId () {
return (TimelineType.pathConstraintMix.ordinal() << 24) + pathConstraintIndex;
}
public void setPathConstraintIndex (int index) {
if (index < 0) throw new IllegalArgumentException("index must be >= 0.");
this.pathConstraintIndex = index;
}
/** The index of the path constraint slot in {@link Skeleton#getPathConstraints()} that will be changed. */
public int getPathConstraintIndex () {
return pathConstraintIndex;
}
/** The time in seconds, rotate mix, and translate mix for each key frame. */
public float[] getFrames () {
return frames;
}
/** The time in seconds, rotate mix, and translate mix for the specified key frame. */
public void setFrame (int frameIndex, float time, float rotateMix, float translateMix) {
frameIndex *= ENTRIES;
frames[frameIndex] = time;
frames[frameIndex + ROTATE] = rotateMix;
frames[frameIndex + TRANSLATE] = translateMix;
}
public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha, MixBlend blend,
MixDirection direction) {
PathConstraint constraint = skeleton.pathConstraints.get(pathConstraintIndex);
float[] frames = this.frames;
if (time < frames[0]) { // Time is before first frame.
switch (blend) {
case setup:
constraint.rotateMix = constraint.data.rotateMix;
constraint.translateMix = constraint.data.translateMix;
return;
case first:
constraint.rotateMix += (constraint.data.rotateMix - constraint.rotateMix) * alpha;
constraint.translateMix += (constraint.data.translateMix - constraint.translateMix) * alpha;
}
return;
}
float rotate, translate;
if (time >= frames[frames.length - ENTRIES]) { // Time is after last frame.
rotate = frames[frames.length + PREV_ROTATE];
translate = frames[frames.length + PREV_TRANSLATE];
} else {
// Interpolate between the previous frame and the current frame.
int frame = binarySearch(frames, time, ENTRIES);
rotate = frames[frame + PREV_ROTATE];
translate = frames[frame + PREV_TRANSLATE];
float frameTime = frames[frame];
float percent = getCurvePercent(frame / ENTRIES - 1,
1 - (time - frameTime) / (frames[frame + PREV_TIME] - frameTime));
rotate += (frames[frame + ROTATE] - rotate) * percent;
translate += (frames[frame + TRANSLATE] - translate) * percent;
}
if (blend == setup) {
constraint.rotateMix = constraint.data.rotateMix + (rotate - constraint.data.rotateMix) * alpha;
constraint.translateMix = constraint.data.translateMix + (translate - constraint.data.translateMix) * alpha;
} else {
constraint.rotateMix += (rotate - constraint.rotateMix) * alpha;
constraint.translateMix += (translate - constraint.translateMix) * alpha;
}
}
}
}