All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.esotericsoftware.spine.Bone Maven / Gradle / Ivy

There is a newer version: 4.2.7
Show newest version
/******************************************************************************
 * Spine Runtimes License Agreement
 * Last updated January 1, 2020. Replaces all prior versions.
 *
 * Copyright (c) 2013-2020, Esoteric Software LLC
 *
 * Integration of the Spine Runtimes into software or otherwise creating
 * derivative works of the Spine Runtimes is permitted under the terms and
 * conditions of Section 2 of the Spine Editor License Agreement:
 * http://esotericsoftware.com/spine-editor-license
 *
 * Otherwise, it is permitted to integrate the Spine Runtimes into software
 * or otherwise create derivative works of the Spine Runtimes (collectively,
 * "Products"), provided that each user of the Products must obtain their own
 * Spine Editor license and redistribution of the Products in any form must
 * include this license and copyright notice.
 *
 * THE SPINE RUNTIMES ARE PROVIDED BY ESOTERIC SOFTWARE LLC "AS IS" AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL ESOTERIC SOFTWARE LLC BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES,
 * BUSINESS INTERRUPTION, OR LOSS OF USE, DATA, OR PROFITS) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THE SPINE RUNTIMES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *****************************************************************************/

package com.esotericsoftware.spine;

import static com.badlogic.gdx.math.Matrix3.*;
import static com.esotericsoftware.spine.utils.SpineUtils.*;

import com.badlogic.gdx.math.Matrix3;
import com.badlogic.gdx.math.Vector2;
import com.badlogic.gdx.utils.Array;
import com.badlogic.gdx.utils.Null;

import com.esotericsoftware.spine.BoneData.TransformMode;

/** Stores a bone's current pose.
 * 

* A bone has a local transform which is used to compute its world transform. A bone also has an applied transform, which is a * local transform that can be applied to compute the world transform. The local transform and applied transform may differ if a * constraint or application code modifies the world transform after it was computed from the local transform. */ public class Bone implements Updatable { final BoneData data; final Skeleton skeleton; @Null final Bone parent; final Array children = new Array(); float x, y, rotation, scaleX, scaleY, shearX, shearY; float ax, ay, arotation, ascaleX, ascaleY, ashearX, ashearY; float a, b, worldX; float c, d, worldY; boolean sorted, active; public Bone (BoneData data, Skeleton skeleton, @Null Bone parent) { if (data == null) throw new IllegalArgumentException("data cannot be null."); if (skeleton == null) throw new IllegalArgumentException("skeleton cannot be null."); this.data = data; this.skeleton = skeleton; this.parent = parent; setToSetupPose(); } /** Copy constructor. Does not copy the {@link #getChildren()} bones. */ public Bone (Bone bone, Skeleton skeleton, @Null Bone parent) { if (bone == null) throw new IllegalArgumentException("bone cannot be null."); if (skeleton == null) throw new IllegalArgumentException("skeleton cannot be null."); this.skeleton = skeleton; this.parent = parent; data = bone.data; x = bone.x; y = bone.y; rotation = bone.rotation; scaleX = bone.scaleX; scaleY = bone.scaleY; shearX = bone.shearX; shearY = bone.shearY; } /** Computes the world transform using the parent bone and this bone's local applied transform. */ public void update () { updateWorldTransform(ax, ay, arotation, ascaleX, ascaleY, ashearX, ashearY); } /** Computes the world transform using the parent bone and this bone's local transform. *

* See {@link #updateWorldTransform(float, float, float, float, float, float, float)}. */ public void updateWorldTransform () { updateWorldTransform(x, y, rotation, scaleX, scaleY, shearX, shearY); } /** Computes the world transform using the parent bone and the specified local transform. The applied transform is set to the * specified local transform. Child bones are not updated. *

* See World transforms in the Spine * Runtimes Guide. */ public void updateWorldTransform (float x, float y, float rotation, float scaleX, float scaleY, float shearX, float shearY) { ax = x; ay = y; arotation = rotation; ascaleX = scaleX; ascaleY = scaleY; ashearX = shearX; ashearY = shearY; Bone parent = this.parent; if (parent == null) { // Root bone. Skeleton skeleton = this.skeleton; float rotationY = rotation + 90 + shearY, sx = skeleton.scaleX, sy = skeleton.scaleY; a = cosDeg(rotation + shearX) * scaleX * sx; b = cosDeg(rotationY) * scaleY * sx; c = sinDeg(rotation + shearX) * scaleX * sy; d = sinDeg(rotationY) * scaleY * sy; worldX = x * sx + skeleton.x; worldY = y * sy + skeleton.y; return; } float pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d; worldX = pa * x + pb * y + parent.worldX; worldY = pc * x + pd * y + parent.worldY; switch (data.transformMode) { case normal: { float rotationY = rotation + 90 + shearY; float la = cosDeg(rotation + shearX) * scaleX; float lb = cosDeg(rotationY) * scaleY; float lc = sinDeg(rotation + shearX) * scaleX; float ld = sinDeg(rotationY) * scaleY; a = pa * la + pb * lc; b = pa * lb + pb * ld; c = pc * la + pd * lc; d = pc * lb + pd * ld; return; } case onlyTranslation: { float rotationY = rotation + 90 + shearY; a = cosDeg(rotation + shearX) * scaleX; b = cosDeg(rotationY) * scaleY; c = sinDeg(rotation + shearX) * scaleX; d = sinDeg(rotationY) * scaleY; break; } case noRotationOrReflection: { float s = pa * pa + pc * pc, prx; if (s > 0.0001f) { s = Math.abs(pa * pd - pb * pc) / s; pa /= skeleton.scaleX; pc /= skeleton.scaleY; pb = pc * s; pd = pa * s; prx = atan2(pc, pa) * radDeg; } else { pa = 0; pc = 0; prx = 90 - atan2(pd, pb) * radDeg; } float rx = rotation + shearX - prx; float ry = rotation + shearY - prx + 90; float la = cosDeg(rx) * scaleX; float lb = cosDeg(ry) * scaleY; float lc = sinDeg(rx) * scaleX; float ld = sinDeg(ry) * scaleY; a = pa * la - pb * lc; b = pa * lb - pb * ld; c = pc * la + pd * lc; d = pc * lb + pd * ld; break; } case noScale: case noScaleOrReflection: { float cos = cosDeg(rotation), sin = sinDeg(rotation); float za = (pa * cos + pb * sin) / skeleton.scaleX; float zc = (pc * cos + pd * sin) / skeleton.scaleY; float s = (float)Math.sqrt(za * za + zc * zc); if (s > 0.00001f) s = 1 / s; za *= s; zc *= s; s = (float)Math.sqrt(za * za + zc * zc); if (data.transformMode == TransformMode.noScale && (pa * pd - pb * pc < 0) != (skeleton.scaleX < 0 != skeleton.scaleY < 0)) s = -s; float r = PI / 2 + atan2(zc, za); float zb = cos(r) * s; float zd = sin(r) * s; float la = cosDeg(shearX) * scaleX; float lb = cosDeg(90 + shearY) * scaleY; float lc = sinDeg(shearX) * scaleX; float ld = sinDeg(90 + shearY) * scaleY; a = za * la + zb * lc; b = za * lb + zb * ld; c = zc * la + zd * lc; d = zc * lb + zd * ld; break; } } a *= skeleton.scaleX; b *= skeleton.scaleX; c *= skeleton.scaleY; d *= skeleton.scaleY; } /** Sets this bone's local transform to the setup pose. */ public void setToSetupPose () { BoneData data = this.data; x = data.x; y = data.y; rotation = data.rotation; scaleX = data.scaleX; scaleY = data.scaleY; shearX = data.shearX; shearY = data.shearY; } /** The bone's setup pose data. */ public BoneData getData () { return data; } /** The skeleton this bone belongs to. */ public Skeleton getSkeleton () { return skeleton; } /** The parent bone, or null if this is the root bone. */ public @Null Bone getParent () { return parent; } /** The immediate children of this bone. */ public Array getChildren () { return children; } /** Returns false when the bone has not been computed because {@link BoneData#getSkinRequired()} is true and the * {@link Skeleton#getSkin() active skin} does not {@link Skin#getBones() contain} this bone. */ public boolean isActive () { return active; } // -- Local transform /** The local x translation. */ public float getX () { return x; } public void setX (float x) { this.x = x; } /** The local y translation. */ public float getY () { return y; } public void setY (float y) { this.y = y; } public void setPosition (float x, float y) { this.x = x; this.y = y; } /** The local rotation in degrees, counter clockwise. */ public float getRotation () { return rotation; } public void setRotation (float rotation) { this.rotation = rotation; } /** The local scaleX. */ public float getScaleX () { return scaleX; } public void setScaleX (float scaleX) { this.scaleX = scaleX; } /** The local scaleY. */ public float getScaleY () { return scaleY; } public void setScaleY (float scaleY) { this.scaleY = scaleY; } public void setScale (float scaleX, float scaleY) { this.scaleX = scaleX; this.scaleY = scaleY; } public void setScale (float scale) { scaleX = scale; scaleY = scale; } /** The local shearX. */ public float getShearX () { return shearX; } public void setShearX (float shearX) { this.shearX = shearX; } /** The local shearY. */ public float getShearY () { return shearY; } public void setShearY (float shearY) { this.shearY = shearY; } // -- Applied transform /** The applied local x translation. */ public float getAX () { return ax; } public void setAX (float ax) { this.ax = ax; } /** The applied local y translation. */ public float getAY () { return ay; } public void setAY (float ay) { this.ay = ay; } /** The applied local rotation in degrees, counter clockwise. */ public float getARotation () { return arotation; } public void setARotation (float arotation) { this.arotation = arotation; } /** The applied local scaleX. */ public float getAScaleX () { return ascaleX; } public void setAScaleX (float ascaleX) { this.ascaleX = ascaleX; } /** The applied local scaleY. */ public float getAScaleY () { return ascaleY; } public void setAScaleY (float ascaleY) { this.ascaleY = ascaleY; } /** The applied local shearX. */ public float getAShearX () { return ashearX; } public void setAShearX (float ashearX) { this.ashearX = ashearX; } /** The applied local shearY. */ public float getAShearY () { return ashearY; } public void setAShearY (float ashearY) { this.ashearY = ashearY; } /** Computes the applied transform values from the world transform. *

* If the world transform is modified (by a constraint, {@link #rotateWorld(float)}, etc) then this method should be called so * the applied transform matches the world transform. The applied transform may be needed by other code (eg to apply another * constraint). *

* Some information is ambiguous in the world transform, such as -1,-1 scale versus 180 rotation. The applied transform after * calling this method is equivalent to the local transform used to compute the world transform, but may not be identical. */ public void updateAppliedTransform () { Bone parent = this.parent; if (parent == null) { ax = worldX; ay = worldY; float a = this.a, b = this.b, c = this.c, d = this.d; arotation = atan2(c, a) * radDeg; ascaleX = (float)Math.sqrt(a * a + c * c); ascaleY = (float)Math.sqrt(b * b + d * d); ashearX = 0; ashearY = atan2(a * b + c * d, a * d - b * c) * radDeg; return; } float pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d; float pid = 1 / (pa * pd - pb * pc); float dx = worldX - parent.worldX, dy = worldY - parent.worldY; ax = (dx * pd * pid - dy * pb * pid); ay = (dy * pa * pid - dx * pc * pid); float ia = pid * pd; float id = pid * pa; float ib = pid * pb; float ic = pid * pc; float ra = ia * a - ib * c; float rb = ia * b - ib * d; float rc = id * c - ic * a; float rd = id * d - ic * b; ashearX = 0; ascaleX = (float)Math.sqrt(ra * ra + rc * rc); if (ascaleX > 0.0001f) { float det = ra * rd - rb * rc; ascaleY = det / ascaleX; ashearY = atan2(ra * rb + rc * rd, det) * radDeg; arotation = atan2(rc, ra) * radDeg; } else { ascaleX = 0; ascaleY = (float)Math.sqrt(rb * rb + rd * rd); ashearY = 0; arotation = 90 - atan2(rd, rb) * radDeg; } } // -- World transform /** Part of the world transform matrix for the X axis. If changed, {@link #updateAppliedTransform()} should be called. */ public float getA () { return a; } public void setA (float a) { this.a = a; } /** Part of the world transform matrix for the Y axis. If changed, {@link #updateAppliedTransform()} should be called. */ public float getB () { return b; } public void setB (float b) { this.b = b; } /** Part of the world transform matrix for the X axis. If changed, {@link #updateAppliedTransform()} should be called. */ public float getC () { return c; } public void setC (float c) { this.c = c; } /** Part of the world transform matrix for the Y axis. If changed, {@link #updateAppliedTransform()} should be called. */ public float getD () { return d; } public void setD (float d) { this.d = d; } /** The world X position. If changed, {@link #updateAppliedTransform()} should be called. */ public float getWorldX () { return worldX; } public void setWorldX (float worldX) { this.worldX = worldX; } /** The world Y position. If changed, {@link #updateAppliedTransform()} should be called. */ public float getWorldY () { return worldY; } public void setWorldY (float worldY) { this.worldY = worldY; } /** The world rotation for the X axis, calculated using {@link #a} and {@link #c}. */ public float getWorldRotationX () { return atan2(c, a) * radDeg; } /** The world rotation for the Y axis, calculated using {@link #b} and {@link #d}. */ public float getWorldRotationY () { return atan2(d, b) * radDeg; } /** The magnitude (always positive) of the world scale X, calculated using {@link #a} and {@link #c}. */ public float getWorldScaleX () { return (float)Math.sqrt(a * a + c * c); } /** The magnitude (always positive) of the world scale Y, calculated using {@link #b} and {@link #d}. */ public float getWorldScaleY () { return (float)Math.sqrt(b * b + d * d); } public Matrix3 getWorldTransform (Matrix3 worldTransform) { if (worldTransform == null) throw new IllegalArgumentException("worldTransform cannot be null."); float[] val = worldTransform.val; val[M00] = a; val[M01] = b; val[M10] = c; val[M11] = d; val[M02] = worldX; val[M12] = worldY; val[M20] = 0; val[M21] = 0; val[M22] = 1; return worldTransform; } /** Transforms a point from world coordinates to the bone's local coordinates. */ public Vector2 worldToLocal (Vector2 world) { if (world == null) throw new IllegalArgumentException("world cannot be null."); float det = a * d - b * c; float x = world.x - worldX, y = world.y - worldY; world.x = (x * d - y * b) / det; world.y = (y * a - x * c) / det; return world; } /** Transforms a point from the bone's local coordinates to world coordinates. */ public Vector2 localToWorld (Vector2 local) { if (local == null) throw new IllegalArgumentException("local cannot be null."); float x = local.x, y = local.y; local.x = x * a + y * b + worldX; local.y = x * c + y * d + worldY; return local; } /** Transforms a world rotation to a local rotation. */ public float worldToLocalRotation (float worldRotation) { float sin = sinDeg(worldRotation), cos = cosDeg(worldRotation); return atan2(a * sin - c * cos, d * cos - b * sin) * radDeg + rotation - shearX; } /** Transforms a local rotation to a world rotation. */ public float localToWorldRotation (float localRotation) { localRotation -= rotation - shearX; float sin = sinDeg(localRotation), cos = cosDeg(localRotation); return atan2(cos * c + sin * d, cos * a + sin * b) * radDeg; } /** Rotates the world transform the specified amount. *

* After changes are made to the world transform, {@link #updateAppliedTransform()} should be called and {@link #update()} will * need to be called on any child bones, recursively. */ public void rotateWorld (float degrees) { float cos = cosDeg(degrees), sin = sinDeg(degrees); a = cos * a - sin * c; b = cos * b - sin * d; c = sin * a + cos * c; d = sin * b + cos * d; } // --- public String toString () { return data.name; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy