com.esotericsoftware.spine.Bone Maven / Gradle / Ivy
/******************************************************************************
* Spine Runtimes License Agreement
* Last updated January 1, 2020. Replaces all prior versions.
*
* Copyright (c) 2013-2020, Esoteric Software LLC
*
* Integration of the Spine Runtimes into software or otherwise creating
* derivative works of the Spine Runtimes is permitted under the terms and
* conditions of Section 2 of the Spine Editor License Agreement:
* http://esotericsoftware.com/spine-editor-license
*
* Otherwise, it is permitted to integrate the Spine Runtimes into software
* or otherwise create derivative works of the Spine Runtimes (collectively,
* "Products"), provided that each user of the Products must obtain their own
* Spine Editor license and redistribution of the Products in any form must
* include this license and copyright notice.
*
* THE SPINE RUNTIMES ARE PROVIDED BY ESOTERIC SOFTWARE LLC "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL ESOTERIC SOFTWARE LLC BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES,
* BUSINESS INTERRUPTION, OR LOSS OF USE, DATA, OR PROFITS) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THE SPINE RUNTIMES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
package com.esotericsoftware.spine;
import static com.badlogic.gdx.math.Matrix3.*;
import static com.esotericsoftware.spine.utils.SpineUtils.*;
import com.badlogic.gdx.math.Matrix3;
import com.badlogic.gdx.math.Vector2;
import com.badlogic.gdx.utils.Array;
import com.badlogic.gdx.utils.Null;
import com.esotericsoftware.spine.BoneData.TransformMode;
/** Stores a bone's current pose.
*
* A bone has a local transform which is used to compute its world transform. A bone also has an applied transform, which is a
* local transform that can be applied to compute the world transform. The local transform and applied transform may differ if a
* constraint or application code modifies the world transform after it was computed from the local transform. */
public class Bone implements Updatable {
final BoneData data;
final Skeleton skeleton;
@Null final Bone parent;
final Array children = new Array();
float x, y, rotation, scaleX, scaleY, shearX, shearY;
float ax, ay, arotation, ascaleX, ascaleY, ashearX, ashearY;
float a, b, worldX;
float c, d, worldY;
boolean sorted, active;
public Bone (BoneData data, Skeleton skeleton, @Null Bone parent) {
if (data == null) throw new IllegalArgumentException("data cannot be null.");
if (skeleton == null) throw new IllegalArgumentException("skeleton cannot be null.");
this.data = data;
this.skeleton = skeleton;
this.parent = parent;
setToSetupPose();
}
/** Copy constructor. Does not copy the {@link #getChildren()} bones. */
public Bone (Bone bone, Skeleton skeleton, @Null Bone parent) {
if (bone == null) throw new IllegalArgumentException("bone cannot be null.");
if (skeleton == null) throw new IllegalArgumentException("skeleton cannot be null.");
this.skeleton = skeleton;
this.parent = parent;
data = bone.data;
x = bone.x;
y = bone.y;
rotation = bone.rotation;
scaleX = bone.scaleX;
scaleY = bone.scaleY;
shearX = bone.shearX;
shearY = bone.shearY;
}
/** Computes the world transform using the parent bone and this bone's local applied transform. */
public void update () {
updateWorldTransform(ax, ay, arotation, ascaleX, ascaleY, ashearX, ashearY);
}
/** Computes the world transform using the parent bone and this bone's local transform.
*
* See {@link #updateWorldTransform(float, float, float, float, float, float, float)}. */
public void updateWorldTransform () {
updateWorldTransform(x, y, rotation, scaleX, scaleY, shearX, shearY);
}
/** Computes the world transform using the parent bone and the specified local transform. The applied transform is set to the
* specified local transform. Child bones are not updated.
*
* See World transforms in the Spine
* Runtimes Guide. */
public void updateWorldTransform (float x, float y, float rotation, float scaleX, float scaleY, float shearX, float shearY) {
ax = x;
ay = y;
arotation = rotation;
ascaleX = scaleX;
ascaleY = scaleY;
ashearX = shearX;
ashearY = shearY;
Bone parent = this.parent;
if (parent == null) { // Root bone.
Skeleton skeleton = this.skeleton;
float rotationY = rotation + 90 + shearY, sx = skeleton.scaleX, sy = skeleton.scaleY;
a = cosDeg(rotation + shearX) * scaleX * sx;
b = cosDeg(rotationY) * scaleY * sx;
c = sinDeg(rotation + shearX) * scaleX * sy;
d = sinDeg(rotationY) * scaleY * sy;
worldX = x * sx + skeleton.x;
worldY = y * sy + skeleton.y;
return;
}
float pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d;
worldX = pa * x + pb * y + parent.worldX;
worldY = pc * x + pd * y + parent.worldY;
switch (data.transformMode) {
case normal: {
float rotationY = rotation + 90 + shearY;
float la = cosDeg(rotation + shearX) * scaleX;
float lb = cosDeg(rotationY) * scaleY;
float lc = sinDeg(rotation + shearX) * scaleX;
float ld = sinDeg(rotationY) * scaleY;
a = pa * la + pb * lc;
b = pa * lb + pb * ld;
c = pc * la + pd * lc;
d = pc * lb + pd * ld;
return;
}
case onlyTranslation: {
float rotationY = rotation + 90 + shearY;
a = cosDeg(rotation + shearX) * scaleX;
b = cosDeg(rotationY) * scaleY;
c = sinDeg(rotation + shearX) * scaleX;
d = sinDeg(rotationY) * scaleY;
break;
}
case noRotationOrReflection: {
float s = pa * pa + pc * pc, prx;
if (s > 0.0001f) {
s = Math.abs(pa * pd - pb * pc) / s;
pa /= skeleton.scaleX;
pc /= skeleton.scaleY;
pb = pc * s;
pd = pa * s;
prx = atan2(pc, pa) * radDeg;
} else {
pa = 0;
pc = 0;
prx = 90 - atan2(pd, pb) * radDeg;
}
float rx = rotation + shearX - prx;
float ry = rotation + shearY - prx + 90;
float la = cosDeg(rx) * scaleX;
float lb = cosDeg(ry) * scaleY;
float lc = sinDeg(rx) * scaleX;
float ld = sinDeg(ry) * scaleY;
a = pa * la - pb * lc;
b = pa * lb - pb * ld;
c = pc * la + pd * lc;
d = pc * lb + pd * ld;
break;
}
case noScale:
case noScaleOrReflection: {
float cos = cosDeg(rotation), sin = sinDeg(rotation);
float za = (pa * cos + pb * sin) / skeleton.scaleX;
float zc = (pc * cos + pd * sin) / skeleton.scaleY;
float s = (float)Math.sqrt(za * za + zc * zc);
if (s > 0.00001f) s = 1 / s;
za *= s;
zc *= s;
s = (float)Math.sqrt(za * za + zc * zc);
if (data.transformMode == TransformMode.noScale
&& (pa * pd - pb * pc < 0) != (skeleton.scaleX < 0 != skeleton.scaleY < 0)) s = -s;
float r = PI / 2 + atan2(zc, za);
float zb = cos(r) * s;
float zd = sin(r) * s;
float la = cosDeg(shearX) * scaleX;
float lb = cosDeg(90 + shearY) * scaleY;
float lc = sinDeg(shearX) * scaleX;
float ld = sinDeg(90 + shearY) * scaleY;
a = za * la + zb * lc;
b = za * lb + zb * ld;
c = zc * la + zd * lc;
d = zc * lb + zd * ld;
break;
}
}
a *= skeleton.scaleX;
b *= skeleton.scaleX;
c *= skeleton.scaleY;
d *= skeleton.scaleY;
}
/** Sets this bone's local transform to the setup pose. */
public void setToSetupPose () {
BoneData data = this.data;
x = data.x;
y = data.y;
rotation = data.rotation;
scaleX = data.scaleX;
scaleY = data.scaleY;
shearX = data.shearX;
shearY = data.shearY;
}
/** The bone's setup pose data. */
public BoneData getData () {
return data;
}
/** The skeleton this bone belongs to. */
public Skeleton getSkeleton () {
return skeleton;
}
/** The parent bone, or null if this is the root bone. */
public @Null Bone getParent () {
return parent;
}
/** The immediate children of this bone. */
public Array getChildren () {
return children;
}
/** Returns false when the bone has not been computed because {@link BoneData#getSkinRequired()} is true and the
* {@link Skeleton#getSkin() active skin} does not {@link Skin#getBones() contain} this bone. */
public boolean isActive () {
return active;
}
// -- Local transform
/** The local x translation. */
public float getX () {
return x;
}
public void setX (float x) {
this.x = x;
}
/** The local y translation. */
public float getY () {
return y;
}
public void setY (float y) {
this.y = y;
}
public void setPosition (float x, float y) {
this.x = x;
this.y = y;
}
/** The local rotation in degrees, counter clockwise. */
public float getRotation () {
return rotation;
}
public void setRotation (float rotation) {
this.rotation = rotation;
}
/** The local scaleX. */
public float getScaleX () {
return scaleX;
}
public void setScaleX (float scaleX) {
this.scaleX = scaleX;
}
/** The local scaleY. */
public float getScaleY () {
return scaleY;
}
public void setScaleY (float scaleY) {
this.scaleY = scaleY;
}
public void setScale (float scaleX, float scaleY) {
this.scaleX = scaleX;
this.scaleY = scaleY;
}
public void setScale (float scale) {
scaleX = scale;
scaleY = scale;
}
/** The local shearX. */
public float getShearX () {
return shearX;
}
public void setShearX (float shearX) {
this.shearX = shearX;
}
/** The local shearY. */
public float getShearY () {
return shearY;
}
public void setShearY (float shearY) {
this.shearY = shearY;
}
// -- Applied transform
/** The applied local x translation. */
public float getAX () {
return ax;
}
public void setAX (float ax) {
this.ax = ax;
}
/** The applied local y translation. */
public float getAY () {
return ay;
}
public void setAY (float ay) {
this.ay = ay;
}
/** The applied local rotation in degrees, counter clockwise. */
public float getARotation () {
return arotation;
}
public void setARotation (float arotation) {
this.arotation = arotation;
}
/** The applied local scaleX. */
public float getAScaleX () {
return ascaleX;
}
public void setAScaleX (float ascaleX) {
this.ascaleX = ascaleX;
}
/** The applied local scaleY. */
public float getAScaleY () {
return ascaleY;
}
public void setAScaleY (float ascaleY) {
this.ascaleY = ascaleY;
}
/** The applied local shearX. */
public float getAShearX () {
return ashearX;
}
public void setAShearX (float ashearX) {
this.ashearX = ashearX;
}
/** The applied local shearY. */
public float getAShearY () {
return ashearY;
}
public void setAShearY (float ashearY) {
this.ashearY = ashearY;
}
/** Computes the applied transform values from the world transform.
*
* If the world transform is modified (by a constraint, {@link #rotateWorld(float)}, etc) then this method should be called so
* the applied transform matches the world transform. The applied transform may be needed by other code (eg to apply another
* constraint).
*
* Some information is ambiguous in the world transform, such as -1,-1 scale versus 180 rotation. The applied transform after
* calling this method is equivalent to the local transform used to compute the world transform, but may not be identical. */
public void updateAppliedTransform () {
Bone parent = this.parent;
if (parent == null) {
ax = worldX;
ay = worldY;
float a = this.a, b = this.b, c = this.c, d = this.d;
arotation = atan2(c, a) * radDeg;
ascaleX = (float)Math.sqrt(a * a + c * c);
ascaleY = (float)Math.sqrt(b * b + d * d);
ashearX = 0;
ashearY = atan2(a * b + c * d, a * d - b * c) * radDeg;
return;
}
float pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d;
float pid = 1 / (pa * pd - pb * pc);
float dx = worldX - parent.worldX, dy = worldY - parent.worldY;
ax = (dx * pd * pid - dy * pb * pid);
ay = (dy * pa * pid - dx * pc * pid);
float ia = pid * pd;
float id = pid * pa;
float ib = pid * pb;
float ic = pid * pc;
float ra = ia * a - ib * c;
float rb = ia * b - ib * d;
float rc = id * c - ic * a;
float rd = id * d - ic * b;
ashearX = 0;
ascaleX = (float)Math.sqrt(ra * ra + rc * rc);
if (ascaleX > 0.0001f) {
float det = ra * rd - rb * rc;
ascaleY = det / ascaleX;
ashearY = atan2(ra * rb + rc * rd, det) * radDeg;
arotation = atan2(rc, ra) * radDeg;
} else {
ascaleX = 0;
ascaleY = (float)Math.sqrt(rb * rb + rd * rd);
ashearY = 0;
arotation = 90 - atan2(rd, rb) * radDeg;
}
}
// -- World transform
/** Part of the world transform matrix for the X axis. If changed, {@link #updateAppliedTransform()} should be called. */
public float getA () {
return a;
}
public void setA (float a) {
this.a = a;
}
/** Part of the world transform matrix for the Y axis. If changed, {@link #updateAppliedTransform()} should be called. */
public float getB () {
return b;
}
public void setB (float b) {
this.b = b;
}
/** Part of the world transform matrix for the X axis. If changed, {@link #updateAppliedTransform()} should be called. */
public float getC () {
return c;
}
public void setC (float c) {
this.c = c;
}
/** Part of the world transform matrix for the Y axis. If changed, {@link #updateAppliedTransform()} should be called. */
public float getD () {
return d;
}
public void setD (float d) {
this.d = d;
}
/** The world X position. If changed, {@link #updateAppliedTransform()} should be called. */
public float getWorldX () {
return worldX;
}
public void setWorldX (float worldX) {
this.worldX = worldX;
}
/** The world Y position. If changed, {@link #updateAppliedTransform()} should be called. */
public float getWorldY () {
return worldY;
}
public void setWorldY (float worldY) {
this.worldY = worldY;
}
/** The world rotation for the X axis, calculated using {@link #a} and {@link #c}. */
public float getWorldRotationX () {
return atan2(c, a) * radDeg;
}
/** The world rotation for the Y axis, calculated using {@link #b} and {@link #d}. */
public float getWorldRotationY () {
return atan2(d, b) * radDeg;
}
/** The magnitude (always positive) of the world scale X, calculated using {@link #a} and {@link #c}. */
public float getWorldScaleX () {
return (float)Math.sqrt(a * a + c * c);
}
/** The magnitude (always positive) of the world scale Y, calculated using {@link #b} and {@link #d}. */
public float getWorldScaleY () {
return (float)Math.sqrt(b * b + d * d);
}
public Matrix3 getWorldTransform (Matrix3 worldTransform) {
if (worldTransform == null) throw new IllegalArgumentException("worldTransform cannot be null.");
float[] val = worldTransform.val;
val[M00] = a;
val[M01] = b;
val[M10] = c;
val[M11] = d;
val[M02] = worldX;
val[M12] = worldY;
val[M20] = 0;
val[M21] = 0;
val[M22] = 1;
return worldTransform;
}
/** Transforms a point from world coordinates to the bone's local coordinates. */
public Vector2 worldToLocal (Vector2 world) {
if (world == null) throw new IllegalArgumentException("world cannot be null.");
float det = a * d - b * c;
float x = world.x - worldX, y = world.y - worldY;
world.x = (x * d - y * b) / det;
world.y = (y * a - x * c) / det;
return world;
}
/** Transforms a point from the bone's local coordinates to world coordinates. */
public Vector2 localToWorld (Vector2 local) {
if (local == null) throw new IllegalArgumentException("local cannot be null.");
float x = local.x, y = local.y;
local.x = x * a + y * b + worldX;
local.y = x * c + y * d + worldY;
return local;
}
/** Transforms a world rotation to a local rotation. */
public float worldToLocalRotation (float worldRotation) {
float sin = sinDeg(worldRotation), cos = cosDeg(worldRotation);
return atan2(a * sin - c * cos, d * cos - b * sin) * radDeg + rotation - shearX;
}
/** Transforms a local rotation to a world rotation. */
public float localToWorldRotation (float localRotation) {
localRotation -= rotation - shearX;
float sin = sinDeg(localRotation), cos = cosDeg(localRotation);
return atan2(cos * c + sin * d, cos * a + sin * b) * radDeg;
}
/** Rotates the world transform the specified amount.
*
* After changes are made to the world transform, {@link #updateAppliedTransform()} should be called and {@link #update()} will
* need to be called on any child bones, recursively. */
public void rotateWorld (float degrees) {
float cos = cosDeg(degrees), sin = sinDeg(degrees);
a = cos * a - sin * c;
b = cos * b - sin * d;
c = sin * a + cos * c;
d = sin * b + cos * d;
}
// ---
public String toString () {
return data.name;
}
}