com.esotericsoftware.spine.PathConstraint Maven / Gradle / Ivy
/******************************************************************************
* Spine Runtimes License Agreement
* Last updated January 1, 2020. Replaces all prior versions.
*
* Copyright (c) 2013-2020, Esoteric Software LLC
*
* Integration of the Spine Runtimes into software or otherwise creating
* derivative works of the Spine Runtimes is permitted under the terms and
* conditions of Section 2 of the Spine Editor License Agreement:
* http://esotericsoftware.com/spine-editor-license
*
* Otherwise, it is permitted to integrate the Spine Runtimes into software
* or otherwise create derivative works of the Spine Runtimes (collectively,
* "Products"), provided that each user of the Products must obtain their own
* Spine Editor license and redistribution of the Products in any form must
* include this license and copyright notice.
*
* THE SPINE RUNTIMES ARE PROVIDED BY ESOTERIC SOFTWARE LLC "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL ESOTERIC SOFTWARE LLC BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES,
* BUSINESS INTERRUPTION, OR LOSS OF USE, DATA, OR PROFITS) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THE SPINE RUNTIMES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
package com.esotericsoftware.spine;
import java.util.Arrays;
import com.badlogic.gdx.utils.Array;
import com.badlogic.gdx.utils.FloatArray;
import com.esotericsoftware.spine.PathConstraintData.PositionMode;
import com.esotericsoftware.spine.PathConstraintData.RotateMode;
import com.esotericsoftware.spine.PathConstraintData.SpacingMode;
import com.esotericsoftware.spine.attachments.Attachment;
import com.esotericsoftware.spine.attachments.PathAttachment;
import com.esotericsoftware.spine.utils.SpineUtils;
/** Stores the current pose for a path constraint. A path constraint adjusts the rotation, translation, and scale of the
* constrained bones so they follow a {@link PathAttachment}.
*
* See Path constraints in the Spine User Guide. */
public class PathConstraint implements Updatable {
static private final int NONE = -1, BEFORE = -2, AFTER = -3;
static private final float epsilon = 0.00001f;
final PathConstraintData data;
final Array bones;
Slot target;
float position, spacing, mixRotate, mixX, mixY;
boolean active;
private final FloatArray spaces = new FloatArray(), positions = new FloatArray();
private final FloatArray world = new FloatArray(), curves = new FloatArray(), lengths = new FloatArray();
private final float[] segments = new float[10];
public PathConstraint (PathConstraintData data, Skeleton skeleton) {
if (data == null) throw new IllegalArgumentException("data cannot be null.");
if (skeleton == null) throw new IllegalArgumentException("skeleton cannot be null.");
this.data = data;
bones = new Array(data.bones.size);
for (BoneData boneData : data.bones)
bones.add(skeleton.findBone(boneData.name));
target = skeleton.findSlot(data.target.name);
position = data.position;
spacing = data.spacing;
mixRotate = data.mixRotate;
mixX = data.mixX;
mixY = data.mixY;
}
/** Copy constructor. */
public PathConstraint (PathConstraint constraint, Skeleton skeleton) {
if (constraint == null) throw new IllegalArgumentException("constraint cannot be null.");
if (skeleton == null) throw new IllegalArgumentException("skeleton cannot be null.");
data = constraint.data;
bones = new Array(constraint.bones.size);
for (Bone bone : constraint.bones)
bones.add(skeleton.bones.get(bone.data.index));
target = skeleton.slots.get(constraint.target.data.index);
position = constraint.position;
spacing = constraint.spacing;
mixRotate = constraint.mixRotate;
mixX = constraint.mixX;
mixY = constraint.mixY;
}
/** Applies the constraint to the constrained bones. */
public void update () {
Attachment attachment = target.attachment;
if (!(attachment instanceof PathAttachment)) return;
float mixRotate = this.mixRotate, mixX = this.mixX, mixY = this.mixY;
if (mixRotate == 0 && mixX == 0 && mixY == 0) return;
PathConstraintData data = this.data;
boolean tangents = data.rotateMode == RotateMode.tangent, scale = data.rotateMode == RotateMode.chainScale;
int boneCount = this.bones.size, spacesCount = tangents ? boneCount : boneCount + 1;
Object[] bones = this.bones.items;
float[] spaces = this.spaces.setSize(spacesCount), lengths = scale ? this.lengths.setSize(boneCount) : null;
float spacing = this.spacing;
switch (data.spacingMode) {
case percent:
if (scale) {
for (int i = 0, n = spacesCount - 1; i < n; i++) {
Bone bone = (Bone)bones[i];
float setupLength = bone.data.length;
if (setupLength < epsilon)
lengths[i] = 0;
else {
float x = setupLength * bone.a, y = setupLength * bone.c;
lengths[i] = (float)Math.sqrt(x * x + y * y);
}
}
}
Arrays.fill(spaces, 1, spacesCount, spacing);
break;
case proportional:
float sum = 0;
for (int i = 0, n = spacesCount - 1; i < n;) {
Bone bone = (Bone)bones[i];
float setupLength = bone.data.length;
if (setupLength < epsilon) {
if (scale) lengths[i] = 0;
spaces[++i] = spacing;
} else {
float x = setupLength * bone.a, y = setupLength * bone.c;
float length = (float)Math.sqrt(x * x + y * y);
if (scale) lengths[i] = length;
spaces[++i] = length;
sum += length;
}
}
if (sum > 0) {
sum = spacesCount / sum * spacing;
for (int i = 1; i < spacesCount; i++)
spaces[i] *= sum;
}
break;
default:
boolean lengthSpacing = data.spacingMode == SpacingMode.length;
for (int i = 0, n = spacesCount - 1; i < n;) {
Bone bone = (Bone)bones[i];
float setupLength = bone.data.length;
if (setupLength < epsilon) {
if (scale) lengths[i] = 0;
spaces[++i] = spacing;
} else {
float x = setupLength * bone.a, y = setupLength * bone.c;
float length = (float)Math.sqrt(x * x + y * y);
if (scale) lengths[i] = length;
spaces[++i] = (lengthSpacing ? setupLength + spacing : spacing) * length / setupLength;
}
}
}
float[] positions = computeWorldPositions((PathAttachment)attachment, spacesCount, tangents);
float boneX = positions[0], boneY = positions[1], offsetRotation = data.offsetRotation;
boolean tip;
if (offsetRotation == 0)
tip = data.rotateMode == RotateMode.chain;
else {
tip = false;
Bone p = target.bone;
offsetRotation *= p.a * p.d - p.b * p.c > 0 ? SpineUtils.degRad : -SpineUtils.degRad;
}
for (int i = 0, p = 3; i < boneCount; i++, p += 3) {
Bone bone = (Bone)bones[i];
bone.worldX += (boneX - bone.worldX) * mixX;
bone.worldY += (boneY - bone.worldY) * mixY;
float x = positions[p], y = positions[p + 1], dx = x - boneX, dy = y - boneY;
if (scale) {
float length = lengths[i];
if (length >= epsilon) {
float s = ((float)Math.sqrt(dx * dx + dy * dy) / length - 1) * mixRotate + 1;
bone.a *= s;
bone.c *= s;
}
}
boneX = x;
boneY = y;
if (mixRotate > 0) {
float a = bone.a, b = bone.b, c = bone.c, d = bone.d, r, cos, sin;
if (tangents)
r = positions[p - 1];
else if (spaces[i + 1] < epsilon)
r = positions[p + 2];
else
r = (float)Math.atan2(dy, dx);
r -= (float)Math.atan2(c, a);
if (tip) {
cos = (float)Math.cos(r);
sin = (float)Math.sin(r);
float length = bone.data.length;
boneX += (length * (cos * a - sin * c) - dx) * mixRotate;
boneY += (length * (sin * a + cos * c) - dy) * mixRotate;
} else
r += offsetRotation;
if (r > SpineUtils.PI)
r -= SpineUtils.PI2;
else if (r < -SpineUtils.PI) //
r += SpineUtils.PI2;
r *= mixRotate;
cos = (float)Math.cos(r);
sin = (float)Math.sin(r);
bone.a = cos * a - sin * c;
bone.b = cos * b - sin * d;
bone.c = sin * a + cos * c;
bone.d = sin * b + cos * d;
}
bone.updateAppliedTransform();
}
}
float[] computeWorldPositions (PathAttachment path, int spacesCount, boolean tangents) {
Slot target = this.target;
float position = this.position;
float[] spaces = this.spaces.items, out = this.positions.setSize(spacesCount * 3 + 2), world;
boolean closed = path.getClosed();
int verticesLength = path.getWorldVerticesLength(), curveCount = verticesLength / 6, prevCurve = NONE;
if (!path.getConstantSpeed()) {
float[] lengths = path.getLengths();
curveCount -= closed ? 1 : 2;
float pathLength = lengths[curveCount];
if (data.positionMode == PositionMode.percent) position *= pathLength;
float multiplier;
switch (data.spacingMode) {
case percent:
multiplier = pathLength;
break;
case proportional:
multiplier = pathLength / spacesCount;
break;
default:
multiplier = 1;
}
world = this.world.setSize(8);
for (int i = 0, o = 0, curve = 0; i < spacesCount; i++, o += 3) {
float space = spaces[i] * multiplier;
position += space;
float p = position;
if (closed) {
p %= pathLength;
if (p < 0) p += pathLength;
curve = 0;
} else if (p < 0) {
if (prevCurve != BEFORE) {
prevCurve = BEFORE;
path.computeWorldVertices(target, 2, 4, world, 0, 2);
}
addBeforePosition(p, world, 0, out, o);
continue;
} else if (p > pathLength) {
if (prevCurve != AFTER) {
prevCurve = AFTER;
path.computeWorldVertices(target, verticesLength - 6, 4, world, 0, 2);
}
addAfterPosition(p - pathLength, world, 0, out, o);
continue;
}
// Determine curve containing position.
for (;; curve++) {
float length = lengths[curve];
if (p > length) continue;
if (curve == 0)
p /= length;
else {
float prev = lengths[curve - 1];
p = (p - prev) / (length - prev);
}
break;
}
if (curve != prevCurve) {
prevCurve = curve;
if (closed && curve == curveCount) {
path.computeWorldVertices(target, verticesLength - 4, 4, world, 0, 2);
path.computeWorldVertices(target, 0, 4, world, 4, 2);
} else
path.computeWorldVertices(target, curve * 6 + 2, 8, world, 0, 2);
}
addCurvePosition(p, world[0], world[1], world[2], world[3], world[4], world[5], world[6], world[7], out, o,
tangents || (i > 0 && space < epsilon));
}
return out;
}
// World vertices.
if (closed) {
verticesLength += 2;
world = this.world.setSize(verticesLength);
path.computeWorldVertices(target, 2, verticesLength - 4, world, 0, 2);
path.computeWorldVertices(target, 0, 2, world, verticesLength - 4, 2);
world[verticesLength - 2] = world[0];
world[verticesLength - 1] = world[1];
} else {
curveCount--;
verticesLength -= 4;
world = this.world.setSize(verticesLength);
path.computeWorldVertices(target, 2, verticesLength, world, 0, 2);
}
// Curve lengths.
float[] curves = this.curves.setSize(curveCount);
float pathLength = 0;
float x1 = world[0], y1 = world[1], cx1 = 0, cy1 = 0, cx2 = 0, cy2 = 0, x2 = 0, y2 = 0;
float tmpx, tmpy, dddfx, dddfy, ddfx, ddfy, dfx, dfy;
for (int i = 0, w = 2; i < curveCount; i++, w += 6) {
cx1 = world[w];
cy1 = world[w + 1];
cx2 = world[w + 2];
cy2 = world[w + 3];
x2 = world[w + 4];
y2 = world[w + 5];
tmpx = (x1 - cx1 * 2 + cx2) * 0.1875f;
tmpy = (y1 - cy1 * 2 + cy2) * 0.1875f;
dddfx = ((cx1 - cx2) * 3 - x1 + x2) * 0.09375f;
dddfy = ((cy1 - cy2) * 3 - y1 + y2) * 0.09375f;
ddfx = tmpx * 2 + dddfx;
ddfy = tmpy * 2 + dddfy;
dfx = (cx1 - x1) * 0.75f + tmpx + dddfx * 0.16666667f;
dfy = (cy1 - y1) * 0.75f + tmpy + dddfy * 0.16666667f;
pathLength += (float)Math.sqrt(dfx * dfx + dfy * dfy);
dfx += ddfx;
dfy += ddfy;
ddfx += dddfx;
ddfy += dddfy;
pathLength += (float)Math.sqrt(dfx * dfx + dfy * dfy);
dfx += ddfx;
dfy += ddfy;
pathLength += (float)Math.sqrt(dfx * dfx + dfy * dfy);
dfx += ddfx + dddfx;
dfy += ddfy + dddfy;
pathLength += (float)Math.sqrt(dfx * dfx + dfy * dfy);
curves[i] = pathLength;
x1 = x2;
y1 = y2;
}
if (data.positionMode == PositionMode.percent) position *= pathLength;
float multiplier;
switch (data.spacingMode) {
case percent:
multiplier = pathLength;
break;
case proportional:
multiplier = pathLength / spacesCount;
break;
default:
multiplier = 1;
}
float[] segments = this.segments;
float curveLength = 0;
for (int i = 0, o = 0, curve = 0, segment = 0; i < spacesCount; i++, o += 3) {
float space = spaces[i] * multiplier;
position += space;
float p = position;
if (closed) {
p %= pathLength;
if (p < 0) p += pathLength;
curve = 0;
} else if (p < 0) {
addBeforePosition(p, world, 0, out, o);
continue;
} else if (p > pathLength) {
addAfterPosition(p - pathLength, world, verticesLength - 4, out, o);
continue;
}
// Determine curve containing position.
for (;; curve++) {
float length = curves[curve];
if (p > length) continue;
if (curve == 0)
p /= length;
else {
float prev = curves[curve - 1];
p = (p - prev) / (length - prev);
}
break;
}
// Curve segment lengths.
if (curve != prevCurve) {
prevCurve = curve;
int ii = curve * 6;
x1 = world[ii];
y1 = world[ii + 1];
cx1 = world[ii + 2];
cy1 = world[ii + 3];
cx2 = world[ii + 4];
cy2 = world[ii + 5];
x2 = world[ii + 6];
y2 = world[ii + 7];
tmpx = (x1 - cx1 * 2 + cx2) * 0.03f;
tmpy = (y1 - cy1 * 2 + cy2) * 0.03f;
dddfx = ((cx1 - cx2) * 3 - x1 + x2) * 0.006f;
dddfy = ((cy1 - cy2) * 3 - y1 + y2) * 0.006f;
ddfx = tmpx * 2 + dddfx;
ddfy = tmpy * 2 + dddfy;
dfx = (cx1 - x1) * 0.3f + tmpx + dddfx * 0.16666667f;
dfy = (cy1 - y1) * 0.3f + tmpy + dddfy * 0.16666667f;
curveLength = (float)Math.sqrt(dfx * dfx + dfy * dfy);
segments[0] = curveLength;
for (ii = 1; ii < 8; ii++) {
dfx += ddfx;
dfy += ddfy;
ddfx += dddfx;
ddfy += dddfy;
curveLength += (float)Math.sqrt(dfx * dfx + dfy * dfy);
segments[ii] = curveLength;
}
dfx += ddfx;
dfy += ddfy;
curveLength += (float)Math.sqrt(dfx * dfx + dfy * dfy);
segments[8] = curveLength;
dfx += ddfx + dddfx;
dfy += ddfy + dddfy;
curveLength += (float)Math.sqrt(dfx * dfx + dfy * dfy);
segments[9] = curveLength;
segment = 0;
}
// Weight by segment length.
p *= curveLength;
for (;; segment++) {
float length = segments[segment];
if (p > length) continue;
if (segment == 0)
p /= length;
else {
float prev = segments[segment - 1];
p = segment + (p - prev) / (length - prev);
}
break;
}
addCurvePosition(p * 0.1f, x1, y1, cx1, cy1, cx2, cy2, x2, y2, out, o, tangents || (i > 0 && space < epsilon));
}
return out;
}
private void addBeforePosition (float p, float[] temp, int i, float[] out, int o) {
float x1 = temp[i], y1 = temp[i + 1], dx = temp[i + 2] - x1, dy = temp[i + 3] - y1, r = (float)Math.atan2(dy, dx);
out[o] = x1 + p * (float)Math.cos(r);
out[o + 1] = y1 + p * (float)Math.sin(r);
out[o + 2] = r;
}
private void addAfterPosition (float p, float[] temp, int i, float[] out, int o) {
float x1 = temp[i + 2], y1 = temp[i + 3], dx = x1 - temp[i], dy = y1 - temp[i + 1], r = (float)Math.atan2(dy, dx);
out[o] = x1 + p * (float)Math.cos(r);
out[o + 1] = y1 + p * (float)Math.sin(r);
out[o + 2] = r;
}
private void addCurvePosition (float p, float x1, float y1, float cx1, float cy1, float cx2, float cy2, float x2, float y2,
float[] out, int o, boolean tangents) {
if (p < epsilon || Float.isNaN(p)) {
out[o] = x1;
out[o + 1] = y1;
out[o + 2] = (float)Math.atan2(cy1 - y1, cx1 - x1);
return;
}
float tt = p * p, ttt = tt * p, u = 1 - p, uu = u * u, uuu = uu * u;
float ut = u * p, ut3 = ut * 3, uut3 = u * ut3, utt3 = ut3 * p;
float x = x1 * uuu + cx1 * uut3 + cx2 * utt3 + x2 * ttt, y = y1 * uuu + cy1 * uut3 + cy2 * utt3 + y2 * ttt;
out[o] = x;
out[o + 1] = y;
if (tangents) {
if (p < 0.001f)
out[o + 2] = (float)Math.atan2(cy1 - y1, cx1 - x1);
else
out[o + 2] = (float)Math.atan2(y - (y1 * uu + cy1 * ut * 2 + cy2 * tt), x - (x1 * uu + cx1 * ut * 2 + cx2 * tt));
}
}
/** The position along the path. */
public float getPosition () {
return position;
}
public void setPosition (float position) {
this.position = position;
}
/** The spacing between bones. */
public float getSpacing () {
return spacing;
}
public void setSpacing (float spacing) {
this.spacing = spacing;
}
/** A percentage (0-1) that controls the mix between the constrained and unconstrained rotation. */
public float getMixRotate () {
return mixRotate;
}
public void setMixRotate (float mixRotate) {
this.mixRotate = mixRotate;
}
/** A percentage (0-1) that controls the mix between the constrained and unconstrained translation X. */
public float getMixX () {
return mixX;
}
public void setMixX (float mixX) {
this.mixX = mixX;
}
/** A percentage (0-1) that controls the mix between the constrained and unconstrained translation Y. */
public float getMixY () {
return mixY;
}
public void setMixY (float mixY) {
this.mixY = mixY;
}
/** The bones that will be modified by this path constraint. */
public Array getBones () {
return bones;
}
/** The slot whose path attachment will be used to constrained the bones. */
public Slot getTarget () {
return target;
}
public void setTarget (Slot target) {
if (target == null) throw new IllegalArgumentException("target cannot be null.");
this.target = target;
}
public boolean isActive () {
return active;
}
/** The path constraint's setup pose data. */
public PathConstraintData getData () {
return data;
}
public String toString () {
return data.name;
}
}