All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.esotericsoftware.spine.PathConstraint Maven / Gradle / Ivy

There is a newer version: 4.2.7
Show newest version
/******************************************************************************
 * Spine Runtimes License Agreement
 * Last updated July 28, 2023. Replaces all prior versions.
 *
 * Copyright (c) 2013-2023, Esoteric Software LLC
 *
 * Integration of the Spine Runtimes into software or otherwise creating
 * derivative works of the Spine Runtimes is permitted under the terms and
 * conditions of Section 2 of the Spine Editor License Agreement:
 * http://esotericsoftware.com/spine-editor-license
 *
 * Otherwise, it is permitted to integrate the Spine Runtimes into software or
 * otherwise create derivative works of the Spine Runtimes (collectively,
 * "Products"), provided that each user of the Products must obtain their own
 * Spine Editor license and redistribution of the Products in any form must
 * include this license and copyright notice.
 *
 * THE SPINE RUNTIMES ARE PROVIDED BY ESOTERIC SOFTWARE LLC "AS IS" AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL ESOTERIC SOFTWARE LLC BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES,
 * BUSINESS INTERRUPTION, OR LOSS OF USE, DATA, OR PROFITS) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THE
 * SPINE RUNTIMES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *****************************************************************************/

package com.esotericsoftware.spine;

import static com.esotericsoftware.spine.utils.SpineUtils.*;

import java.util.Arrays;

import com.badlogic.gdx.utils.Array;
import com.badlogic.gdx.utils.FloatArray;

import com.esotericsoftware.spine.PathConstraintData.PositionMode;
import com.esotericsoftware.spine.PathConstraintData.RotateMode;
import com.esotericsoftware.spine.PathConstraintData.SpacingMode;
import com.esotericsoftware.spine.Skeleton.Physics;
import com.esotericsoftware.spine.attachments.Attachment;
import com.esotericsoftware.spine.attachments.PathAttachment;

/** Stores the current pose for a path constraint. A path constraint adjusts the rotation, translation, and scale of the
 * constrained bones so they follow a {@link PathAttachment}.
 * 

* See Path constraints in the Spine User Guide. */ public class PathConstraint implements Updatable { static final int NONE = -1, BEFORE = -2, AFTER = -3; static final float epsilon = 0.00001f; final PathConstraintData data; final Array bones; Slot target; float position, spacing, mixRotate, mixX, mixY; boolean active; private final FloatArray spaces = new FloatArray(), positions = new FloatArray(); private final FloatArray world = new FloatArray(), curves = new FloatArray(), lengths = new FloatArray(); private final float[] segments = new float[10]; public PathConstraint (PathConstraintData data, Skeleton skeleton) { if (data == null) throw new IllegalArgumentException("data cannot be null."); if (skeleton == null) throw new IllegalArgumentException("skeleton cannot be null."); this.data = data; bones = new Array(data.bones.size); for (BoneData boneData : data.bones) bones.add(skeleton.bones.get(boneData.index)); target = skeleton.slots.get(data.target.index); position = data.position; spacing = data.spacing; mixRotate = data.mixRotate; mixX = data.mixX; mixY = data.mixY; } /** Copy constructor. */ public PathConstraint (PathConstraint constraint, Skeleton skeleton) { this(constraint.data, skeleton); position = constraint.position; spacing = constraint.spacing; mixRotate = constraint.mixRotate; mixX = constraint.mixX; mixY = constraint.mixY; } public void setToSetupPose () { PathConstraintData data = this.data; position = data.position; spacing = data.spacing; mixRotate = data.mixRotate; mixX = data.mixX; mixY = data.mixY; } /** Applies the constraint to the constrained bones. */ public void update (Physics physics) { Attachment attachment = target.attachment; if (!(attachment instanceof PathAttachment)) return; float mixRotate = this.mixRotate, mixX = this.mixX, mixY = this.mixY; if (mixRotate == 0 && mixX == 0 && mixY == 0) return; PathConstraintData data = this.data; boolean tangents = data.rotateMode == RotateMode.tangent, scale = data.rotateMode == RotateMode.chainScale; int boneCount = this.bones.size, spacesCount = tangents ? boneCount : boneCount + 1; Object[] bones = this.bones.items; float[] spaces = this.spaces.setSize(spacesCount), lengths = scale ? this.lengths.setSize(boneCount) : null; float spacing = this.spacing; switch (data.spacingMode) { case percent: if (scale) { for (int i = 0, n = spacesCount - 1; i < n; i++) { Bone bone = (Bone)bones[i]; float setupLength = bone.data.length; float x = setupLength * bone.a, y = setupLength * bone.c; lengths[i] = (float)Math.sqrt(x * x + y * y); } } Arrays.fill(spaces, 1, spacesCount, spacing); break; case proportional: float sum = 0; for (int i = 0, n = spacesCount - 1; i < n;) { Bone bone = (Bone)bones[i]; float setupLength = bone.data.length; if (setupLength < epsilon) { if (scale) lengths[i] = 0; spaces[++i] = spacing; } else { float x = setupLength * bone.a, y = setupLength * bone.c; float length = (float)Math.sqrt(x * x + y * y); if (scale) lengths[i] = length; spaces[++i] = length; sum += length; } } if (sum > 0) { sum = spacesCount / sum * spacing; for (int i = 1; i < spacesCount; i++) spaces[i] *= sum; } break; default: boolean lengthSpacing = data.spacingMode == SpacingMode.length; for (int i = 0, n = spacesCount - 1; i < n;) { Bone bone = (Bone)bones[i]; float setupLength = bone.data.length; if (setupLength < epsilon) { if (scale) lengths[i] = 0; spaces[++i] = spacing; } else { float x = setupLength * bone.a, y = setupLength * bone.c; float length = (float)Math.sqrt(x * x + y * y); if (scale) lengths[i] = length; spaces[++i] = (lengthSpacing ? setupLength + spacing : spacing) * length / setupLength; } } } float[] positions = computeWorldPositions((PathAttachment)attachment, spacesCount, tangents); float boneX = positions[0], boneY = positions[1], offsetRotation = data.offsetRotation; boolean tip; if (offsetRotation == 0) tip = data.rotateMode == RotateMode.chain; else { tip = false; Bone p = target.bone; offsetRotation *= p.a * p.d - p.b * p.c > 0 ? degRad : -degRad; } for (int i = 0, p = 3; i < boneCount; i++, p += 3) { Bone bone = (Bone)bones[i]; bone.worldX += (boneX - bone.worldX) * mixX; bone.worldY += (boneY - bone.worldY) * mixY; float x = positions[p], y = positions[p + 1], dx = x - boneX, dy = y - boneY; if (scale) { float length = lengths[i]; if (length >= epsilon) { float s = ((float)Math.sqrt(dx * dx + dy * dy) / length - 1) * mixRotate + 1; bone.a *= s; bone.c *= s; } } boneX = x; boneY = y; if (mixRotate > 0) { float a = bone.a, b = bone.b, c = bone.c, d = bone.d, r, cos, sin; if (tangents) r = positions[p - 1]; else if (spaces[i + 1] < epsilon) r = positions[p + 2]; else r = atan2(dy, dx); r -= atan2(c, a); if (tip) { cos = cos(r); sin = sin(r); float length = bone.data.length; boneX += (length * (cos * a - sin * c) - dx) * mixRotate; boneY += (length * (sin * a + cos * c) - dy) * mixRotate; } else r += offsetRotation; if (r > PI) r -= PI2; else if (r < -PI) // r += PI2; r *= mixRotate; cos = cos(r); sin = sin(r); bone.a = cos * a - sin * c; bone.b = cos * b - sin * d; bone.c = sin * a + cos * c; bone.d = sin * b + cos * d; } bone.updateAppliedTransform(); } } float[] computeWorldPositions (PathAttachment path, int spacesCount, boolean tangents) { Slot target = this.target; float position = this.position; float[] spaces = this.spaces.items, out = this.positions.setSize(spacesCount * 3 + 2), world; boolean closed = path.getClosed(); int verticesLength = path.getWorldVerticesLength(), curveCount = verticesLength / 6, prevCurve = NONE; if (!path.getConstantSpeed()) { float[] lengths = path.getLengths(); curveCount -= closed ? 1 : 2; float pathLength = lengths[curveCount]; if (data.positionMode == PositionMode.percent) position *= pathLength; float multiplier; switch (data.spacingMode) { case percent: multiplier = pathLength; break; case proportional: multiplier = pathLength / spacesCount; break; default: multiplier = 1; } world = this.world.setSize(8); for (int i = 0, o = 0, curve = 0; i < spacesCount; i++, o += 3) { float space = spaces[i] * multiplier; position += space; float p = position; if (closed) { p %= pathLength; if (p < 0) p += pathLength; curve = 0; } else if (p < 0) { if (prevCurve != BEFORE) { prevCurve = BEFORE; path.computeWorldVertices(target, 2, 4, world, 0, 2); } addBeforePosition(p, world, 0, out, o); continue; } else if (p > pathLength) { if (prevCurve != AFTER) { prevCurve = AFTER; path.computeWorldVertices(target, verticesLength - 6, 4, world, 0, 2); } addAfterPosition(p - pathLength, world, 0, out, o); continue; } // Determine curve containing position. for (;; curve++) { float length = lengths[curve]; if (p > length) continue; if (curve == 0) p /= length; else { float prev = lengths[curve - 1]; p = (p - prev) / (length - prev); } break; } if (curve != prevCurve) { prevCurve = curve; if (closed && curve == curveCount) { path.computeWorldVertices(target, verticesLength - 4, 4, world, 0, 2); path.computeWorldVertices(target, 0, 4, world, 4, 2); } else path.computeWorldVertices(target, curve * 6 + 2, 8, world, 0, 2); } addCurvePosition(p, world[0], world[1], world[2], world[3], world[4], world[5], world[6], world[7], out, o, tangents || (i > 0 && space < epsilon)); } return out; } // World vertices. if (closed) { verticesLength += 2; world = this.world.setSize(verticesLength); path.computeWorldVertices(target, 2, verticesLength - 4, world, 0, 2); path.computeWorldVertices(target, 0, 2, world, verticesLength - 4, 2); world[verticesLength - 2] = world[0]; world[verticesLength - 1] = world[1]; } else { curveCount--; verticesLength -= 4; world = this.world.setSize(verticesLength); path.computeWorldVertices(target, 2, verticesLength, world, 0, 2); } // Curve lengths. float[] curves = this.curves.setSize(curveCount); float pathLength = 0; float x1 = world[0], y1 = world[1], cx1 = 0, cy1 = 0, cx2 = 0, cy2 = 0, x2 = 0, y2 = 0; float tmpx, tmpy, dddfx, dddfy, ddfx, ddfy, dfx, dfy; for (int i = 0, w = 2; i < curveCount; i++, w += 6) { cx1 = world[w]; cy1 = world[w + 1]; cx2 = world[w + 2]; cy2 = world[w + 3]; x2 = world[w + 4]; y2 = world[w + 5]; tmpx = (x1 - cx1 * 2 + cx2) * 0.1875f; tmpy = (y1 - cy1 * 2 + cy2) * 0.1875f; dddfx = ((cx1 - cx2) * 3 - x1 + x2) * 0.09375f; dddfy = ((cy1 - cy2) * 3 - y1 + y2) * 0.09375f; ddfx = tmpx * 2 + dddfx; ddfy = tmpy * 2 + dddfy; dfx = (cx1 - x1) * 0.75f + tmpx + dddfx * 0.16666667f; dfy = (cy1 - y1) * 0.75f + tmpy + dddfy * 0.16666667f; pathLength += (float)Math.sqrt(dfx * dfx + dfy * dfy); dfx += ddfx; dfy += ddfy; ddfx += dddfx; ddfy += dddfy; pathLength += (float)Math.sqrt(dfx * dfx + dfy * dfy); dfx += ddfx; dfy += ddfy; pathLength += (float)Math.sqrt(dfx * dfx + dfy * dfy); dfx += ddfx + dddfx; dfy += ddfy + dddfy; pathLength += (float)Math.sqrt(dfx * dfx + dfy * dfy); curves[i] = pathLength; x1 = x2; y1 = y2; } if (data.positionMode == PositionMode.percent) position *= pathLength; float multiplier; switch (data.spacingMode) { case percent: multiplier = pathLength; break; case proportional: multiplier = pathLength / spacesCount; break; default: multiplier = 1; } float[] segments = this.segments; float curveLength = 0; for (int i = 0, o = 0, curve = 0, segment = 0; i < spacesCount; i++, o += 3) { float space = spaces[i] * multiplier; position += space; float p = position; if (closed) { p %= pathLength; if (p < 0) p += pathLength; curve = 0; } else if (p < 0) { addBeforePosition(p, world, 0, out, o); continue; } else if (p > pathLength) { addAfterPosition(p - pathLength, world, verticesLength - 4, out, o); continue; } // Determine curve containing position. for (;; curve++) { float length = curves[curve]; if (p > length) continue; if (curve == 0) p /= length; else { float prev = curves[curve - 1]; p = (p - prev) / (length - prev); } break; } // Curve segment lengths. if (curve != prevCurve) { prevCurve = curve; int ii = curve * 6; x1 = world[ii]; y1 = world[ii + 1]; cx1 = world[ii + 2]; cy1 = world[ii + 3]; cx2 = world[ii + 4]; cy2 = world[ii + 5]; x2 = world[ii + 6]; y2 = world[ii + 7]; tmpx = (x1 - cx1 * 2 + cx2) * 0.03f; tmpy = (y1 - cy1 * 2 + cy2) * 0.03f; dddfx = ((cx1 - cx2) * 3 - x1 + x2) * 0.006f; dddfy = ((cy1 - cy2) * 3 - y1 + y2) * 0.006f; ddfx = tmpx * 2 + dddfx; ddfy = tmpy * 2 + dddfy; dfx = (cx1 - x1) * 0.3f + tmpx + dddfx * 0.16666667f; dfy = (cy1 - y1) * 0.3f + tmpy + dddfy * 0.16666667f; curveLength = (float)Math.sqrt(dfx * dfx + dfy * dfy); segments[0] = curveLength; for (ii = 1; ii < 8; ii++) { dfx += ddfx; dfy += ddfy; ddfx += dddfx; ddfy += dddfy; curveLength += (float)Math.sqrt(dfx * dfx + dfy * dfy); segments[ii] = curveLength; } dfx += ddfx; dfy += ddfy; curveLength += (float)Math.sqrt(dfx * dfx + dfy * dfy); segments[8] = curveLength; dfx += ddfx + dddfx; dfy += ddfy + dddfy; curveLength += (float)Math.sqrt(dfx * dfx + dfy * dfy); segments[9] = curveLength; segment = 0; } // Weight by segment length. p *= curveLength; for (;; segment++) { float length = segments[segment]; if (p > length) continue; if (segment == 0) p /= length; else { float prev = segments[segment - 1]; p = segment + (p - prev) / (length - prev); } break; } addCurvePosition(p * 0.1f, x1, y1, cx1, cy1, cx2, cy2, x2, y2, out, o, tangents || (i > 0 && space < epsilon)); } return out; } private void addBeforePosition (float p, float[] temp, int i, float[] out, int o) { float x1 = temp[i], y1 = temp[i + 1], dx = temp[i + 2] - x1, dy = temp[i + 3] - y1, r = atan2(dy, dx); out[o] = x1 + p * cos(r); out[o + 1] = y1 + p * sin(r); out[o + 2] = r; } private void addAfterPosition (float p, float[] temp, int i, float[] out, int o) { float x1 = temp[i + 2], y1 = temp[i + 3], dx = x1 - temp[i], dy = y1 - temp[i + 1], r = atan2(dy, dx); out[o] = x1 + p * cos(r); out[o + 1] = y1 + p * sin(r); out[o + 2] = r; } private void addCurvePosition (float p, float x1, float y1, float cx1, float cy1, float cx2, float cy2, float x2, float y2, float[] out, int o, boolean tangents) { if (p < epsilon || Float.isNaN(p)) { out[o] = x1; out[o + 1] = y1; out[o + 2] = atan2(cy1 - y1, cx1 - x1); return; } float tt = p * p, ttt = tt * p, u = 1 - p, uu = u * u, uuu = uu * u; float ut = u * p, ut3 = ut * 3, uut3 = u * ut3, utt3 = ut3 * p; float x = x1 * uuu + cx1 * uut3 + cx2 * utt3 + x2 * ttt, y = y1 * uuu + cy1 * uut3 + cy2 * utt3 + y2 * ttt; out[o] = x; out[o + 1] = y; if (tangents) { if (p < 0.001f) out[o + 2] = atan2(cy1 - y1, cx1 - x1); else out[o + 2] = atan2(y - (y1 * uu + cy1 * ut * 2 + cy2 * tt), x - (x1 * uu + cx1 * ut * 2 + cx2 * tt)); } } /** The position along the path. */ public float getPosition () { return position; } public void setPosition (float position) { this.position = position; } /** The spacing between bones. */ public float getSpacing () { return spacing; } public void setSpacing (float spacing) { this.spacing = spacing; } /** A percentage (0-1) that controls the mix between the constrained and unconstrained rotation. */ public float getMixRotate () { return mixRotate; } public void setMixRotate (float mixRotate) { this.mixRotate = mixRotate; } /** A percentage (0-1) that controls the mix between the constrained and unconstrained translation X. */ public float getMixX () { return mixX; } public void setMixX (float mixX) { this.mixX = mixX; } /** A percentage (0-1) that controls the mix between the constrained and unconstrained translation Y. */ public float getMixY () { return mixY; } public void setMixY (float mixY) { this.mixY = mixY; } /** The bones that will be modified by this path constraint. */ public Array getBones () { return bones; } /** The slot whose path attachment will be used to constrained the bones. */ public Slot getTarget () { return target; } public void setTarget (Slot target) { if (target == null) throw new IllegalArgumentException("target cannot be null."); this.target = target; } public boolean isActive () { return active; } /** The path constraint's setup pose data. */ public PathConstraintData getData () { return data; } public String toString () { return data.name; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy