All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.esotericsoftware.spine.TransformConstraint Maven / Gradle / Ivy

There is a newer version: 4.2.7
Show newest version
/******************************************************************************
 * Spine Runtimes License Agreement
 * Last updated July 28, 2023. Replaces all prior versions.
 *
 * Copyright (c) 2013-2023, Esoteric Software LLC
 *
 * Integration of the Spine Runtimes into software or otherwise creating
 * derivative works of the Spine Runtimes is permitted under the terms and
 * conditions of Section 2 of the Spine Editor License Agreement:
 * http://esotericsoftware.com/spine-editor-license
 *
 * Otherwise, it is permitted to integrate the Spine Runtimes into software or
 * otherwise create derivative works of the Spine Runtimes (collectively,
 * "Products"), provided that each user of the Products must obtain their own
 * Spine Editor license and redistribution of the Products in any form must
 * include this license and copyright notice.
 *
 * THE SPINE RUNTIMES ARE PROVIDED BY ESOTERIC SOFTWARE LLC "AS IS" AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL ESOTERIC SOFTWARE LLC BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES,
 * BUSINESS INTERRUPTION, OR LOSS OF USE, DATA, OR PROFITS) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THE
 * SPINE RUNTIMES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *****************************************************************************/

package com.esotericsoftware.spine;

import static com.esotericsoftware.spine.utils.SpineUtils.*;

import com.badlogic.gdx.math.Vector2;
import com.badlogic.gdx.utils.Array;

import com.esotericsoftware.spine.Skeleton.Physics;

/** Stores the current pose for a transform constraint. A transform constraint adjusts the world transform of the constrained
 * bones to match that of the target bone.
 * 

* See Transform constraints in the Spine User Guide. */ public class TransformConstraint implements Updatable { final TransformConstraintData data; final Array bones; Bone target; float mixRotate, mixX, mixY, mixScaleX, mixScaleY, mixShearY; boolean active; final Vector2 temp = new Vector2(); public TransformConstraint (TransformConstraintData data, Skeleton skeleton) { if (data == null) throw new IllegalArgumentException("data cannot be null."); if (skeleton == null) throw new IllegalArgumentException("skeleton cannot be null."); this.data = data; bones = new Array(data.bones.size); for (BoneData boneData : data.bones) bones.add(skeleton.bones.get(boneData.index)); target = skeleton.bones.get(data.target.index); mixRotate = data.mixRotate; mixX = data.mixX; mixY = data.mixY; mixScaleX = data.mixScaleX; mixScaleY = data.mixScaleY; mixShearY = data.mixShearY; } /** Copy constructor. */ public TransformConstraint (TransformConstraint constraint, Skeleton skeleton) { this(constraint.data, skeleton); mixRotate = constraint.mixRotate; mixX = constraint.mixX; mixY = constraint.mixY; mixScaleX = constraint.mixScaleX; mixScaleY = constraint.mixScaleY; mixShearY = constraint.mixShearY; } public void setToSetupPose () { TransformConstraintData data = this.data; mixRotate = data.mixRotate; mixX = data.mixX; mixY = data.mixY; mixScaleX = data.mixScaleX; mixScaleY = data.mixScaleY; mixShearY = data.mixShearY; } /** Applies the constraint to the constrained bones. */ public void update (Physics physics) { if (mixRotate == 0 && mixX == 0 && mixY == 0 && mixScaleX == 0 && mixScaleY == 0 && mixShearY == 0) return; if (data.local) { if (data.relative) applyRelativeLocal(); else applyAbsoluteLocal(); } else { if (data.relative) applyRelativeWorld(); else applyAbsoluteWorld(); } } private void applyAbsoluteWorld () { float mixRotate = this.mixRotate, mixX = this.mixX, mixY = this.mixY, mixScaleX = this.mixScaleX, mixScaleY = this.mixScaleY, mixShearY = this.mixShearY; boolean translate = mixX != 0 || mixY != 0; Bone target = this.target; float ta = target.a, tb = target.b, tc = target.c, td = target.d; float degRadReflect = ta * td - tb * tc > 0 ? degRad : -degRad; float offsetRotation = data.offsetRotation * degRadReflect, offsetShearY = data.offsetShearY * degRadReflect; Object[] bones = this.bones.items; for (int i = 0, n = this.bones.size; i < n; i++) { Bone bone = (Bone)bones[i]; if (mixRotate != 0) { float a = bone.a, b = bone.b, c = bone.c, d = bone.d; float r = atan2(tc, ta) - atan2(c, a) + offsetRotation; if (r > PI) r -= PI2; else if (r < -PI) // r += PI2; r *= mixRotate; float cos = cos(r), sin = sin(r); bone.a = cos * a - sin * c; bone.b = cos * b - sin * d; bone.c = sin * a + cos * c; bone.d = sin * b + cos * d; } if (translate) { Vector2 temp = this.temp; target.localToWorld(temp.set(data.offsetX, data.offsetY)); bone.worldX += (temp.x - bone.worldX) * mixX; bone.worldY += (temp.y - bone.worldY) * mixY; } if (mixScaleX != 0) { float s = (float)Math.sqrt(bone.a * bone.a + bone.c * bone.c); if (s != 0) s = (s + ((float)Math.sqrt(ta * ta + tc * tc) - s + data.offsetScaleX) * mixScaleX) / s; bone.a *= s; bone.c *= s; } if (mixScaleY != 0) { float s = (float)Math.sqrt(bone.b * bone.b + bone.d * bone.d); if (s != 0) s = (s + ((float)Math.sqrt(tb * tb + td * td) - s + data.offsetScaleY) * mixScaleY) / s; bone.b *= s; bone.d *= s; } if (mixShearY > 0) { float b = bone.b, d = bone.d; float by = atan2(d, b); float r = atan2(td, tb) - atan2(tc, ta) - (by - atan2(bone.c, bone.a)); if (r > PI) r -= PI2; else if (r < -PI) // r += PI2; r = by + (r + offsetShearY) * mixShearY; float s = (float)Math.sqrt(b * b + d * d); bone.b = cos(r) * s; bone.d = sin(r) * s; } bone.updateAppliedTransform(); } } private void applyRelativeWorld () { float mixRotate = this.mixRotate, mixX = this.mixX, mixY = this.mixY, mixScaleX = this.mixScaleX, mixScaleY = this.mixScaleY, mixShearY = this.mixShearY; boolean translate = mixX != 0 || mixY != 0; Bone target = this.target; float ta = target.a, tb = target.b, tc = target.c, td = target.d; float degRadReflect = ta * td - tb * tc > 0 ? degRad : -degRad; float offsetRotation = data.offsetRotation * degRadReflect, offsetShearY = data.offsetShearY * degRadReflect; Object[] bones = this.bones.items; for (int i = 0, n = this.bones.size; i < n; i++) { Bone bone = (Bone)bones[i]; if (mixRotate != 0) { float a = bone.a, b = bone.b, c = bone.c, d = bone.d; float r = atan2(tc, ta) + offsetRotation; if (r > PI) r -= PI2; else if (r < -PI) // r += PI2; r *= mixRotate; float cos = cos(r), sin = sin(r); bone.a = cos * a - sin * c; bone.b = cos * b - sin * d; bone.c = sin * a + cos * c; bone.d = sin * b + cos * d; } if (translate) { Vector2 temp = this.temp; target.localToWorld(temp.set(data.offsetX, data.offsetY)); bone.worldX += temp.x * mixX; bone.worldY += temp.y * mixY; } if (mixScaleX != 0) { float s = ((float)Math.sqrt(ta * ta + tc * tc) - 1 + data.offsetScaleX) * mixScaleX + 1; bone.a *= s; bone.c *= s; } if (mixScaleY != 0) { float s = ((float)Math.sqrt(tb * tb + td * td) - 1 + data.offsetScaleY) * mixScaleY + 1; bone.b *= s; bone.d *= s; } if (mixShearY > 0) { float r = atan2(td, tb) - atan2(tc, ta); if (r > PI) r -= PI2; else if (r < -PI) // r += PI2; float b = bone.b, d = bone.d; r = atan2(d, b) + (r - PI / 2 + offsetShearY) * mixShearY; float s = (float)Math.sqrt(b * b + d * d); bone.b = cos(r) * s; bone.d = sin(r) * s; } bone.updateAppliedTransform(); } } private void applyAbsoluteLocal () { float mixRotate = this.mixRotate, mixX = this.mixX, mixY = this.mixY, mixScaleX = this.mixScaleX, mixScaleY = this.mixScaleY, mixShearY = this.mixShearY; Bone target = this.target; Object[] bones = this.bones.items; for (int i = 0, n = this.bones.size; i < n; i++) { Bone bone = (Bone)bones[i]; float rotation = bone.arotation; if (mixRotate != 0) rotation += (target.arotation - rotation + data.offsetRotation) * mixRotate; float x = bone.ax, y = bone.ay; x += (target.ax - x + data.offsetX) * mixX; y += (target.ay - y + data.offsetY) * mixY; float scaleX = bone.ascaleX, scaleY = bone.ascaleY; if (mixScaleX != 0 && scaleX != 0) scaleX = (scaleX + (target.ascaleX - scaleX + data.offsetScaleX) * mixScaleX) / scaleX; if (mixScaleY != 0 && scaleY != 0) scaleY = (scaleY + (target.ascaleY - scaleY + data.offsetScaleY) * mixScaleY) / scaleY; float shearY = bone.ashearY; if (mixShearY != 0) shearY += (target.ashearY - shearY + data.offsetShearY) * mixShearY; bone.updateWorldTransform(x, y, rotation, scaleX, scaleY, bone.ashearX, shearY); } } private void applyRelativeLocal () { float mixRotate = this.mixRotate, mixX = this.mixX, mixY = this.mixY, mixScaleX = this.mixScaleX, mixScaleY = this.mixScaleY, mixShearY = this.mixShearY; Bone target = this.target; Object[] bones = this.bones.items; for (int i = 0, n = this.bones.size; i < n; i++) { Bone bone = (Bone)bones[i]; float rotation = bone.arotation + (target.arotation + data.offsetRotation) * mixRotate; float x = bone.ax + (target.ax + data.offsetX) * mixX; float y = bone.ay + (target.ay + data.offsetY) * mixY; float scaleX = bone.ascaleX * (((target.ascaleX - 1 + data.offsetScaleX) * mixScaleX) + 1); float scaleY = bone.ascaleY * (((target.ascaleY - 1 + data.offsetScaleY) * mixScaleY) + 1); float shearY = bone.ashearY + (target.ashearY + data.offsetShearY) * mixShearY; bone.updateWorldTransform(x, y, rotation, scaleX, scaleY, bone.ashearX, shearY); } } /** The bones that will be modified by this transform constraint. */ public Array getBones () { return bones; } /** The target bone whose world transform will be copied to the constrained bones. */ public Bone getTarget () { return target; } public void setTarget (Bone target) { if (target == null) throw new IllegalArgumentException("target cannot be null."); this.target = target; } /** A percentage (0-1) that controls the mix between the constrained and unconstrained rotation. */ public float getMixRotate () { return mixRotate; } public void setMixRotate (float mixRotate) { this.mixRotate = mixRotate; } /** A percentage (0-1) that controls the mix between the constrained and unconstrained translation X. */ public float getMixX () { return mixX; } public void setMixX (float mixX) { this.mixX = mixX; } /** A percentage (0-1) that controls the mix between the constrained and unconstrained translation Y. */ public float getMixY () { return mixY; } public void setMixY (float mixY) { this.mixY = mixY; } /** A percentage (0-1) that controls the mix between the constrained and unconstrained scale X. */ public float getMixScaleX () { return mixScaleX; } public void setMixScaleX (float mixScaleX) { this.mixScaleX = mixScaleX; } /** A percentage (0-1) that controls the mix between the constrained and unconstrained scale X. */ public float getMixScaleY () { return mixScaleY; } public void setMixScaleY (float mixScaleY) { this.mixScaleY = mixScaleY; } /** A percentage (0-1) that controls the mix between the constrained and unconstrained shear Y. */ public float getMixShearY () { return mixShearY; } public void setMixShearY (float mixShearY) { this.mixShearY = mixShearY; } public boolean isActive () { return active; } /** The transform constraint's setup pose data. */ public TransformConstraintData getData () { return data; } public String toString () { return data.name; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy