com.esotericsoftware.spine.TransformConstraint Maven / Gradle / Ivy
/******************************************************************************
* Spine Runtimes License Agreement
* Last updated July 28, 2023. Replaces all prior versions.
*
* Copyright (c) 2013-2023, Esoteric Software LLC
*
* Integration of the Spine Runtimes into software or otherwise creating
* derivative works of the Spine Runtimes is permitted under the terms and
* conditions of Section 2 of the Spine Editor License Agreement:
* http://esotericsoftware.com/spine-editor-license
*
* Otherwise, it is permitted to integrate the Spine Runtimes into software or
* otherwise create derivative works of the Spine Runtimes (collectively,
* "Products"), provided that each user of the Products must obtain their own
* Spine Editor license and redistribution of the Products in any form must
* include this license and copyright notice.
*
* THE SPINE RUNTIMES ARE PROVIDED BY ESOTERIC SOFTWARE LLC "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL ESOTERIC SOFTWARE LLC BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES,
* BUSINESS INTERRUPTION, OR LOSS OF USE, DATA, OR PROFITS) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THE
* SPINE RUNTIMES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
package com.esotericsoftware.spine;
import static com.esotericsoftware.spine.utils.SpineUtils.*;
import com.badlogic.gdx.math.Vector2;
import com.badlogic.gdx.utils.Array;
import com.esotericsoftware.spine.Skeleton.Physics;
/** Stores the current pose for a transform constraint. A transform constraint adjusts the world transform of the constrained
* bones to match that of the target bone.
*
* See Transform constraints in the Spine User Guide. */
public class TransformConstraint implements Updatable {
final TransformConstraintData data;
final Array bones;
Bone target;
float mixRotate, mixX, mixY, mixScaleX, mixScaleY, mixShearY;
boolean active;
final Vector2 temp = new Vector2();
public TransformConstraint (TransformConstraintData data, Skeleton skeleton) {
if (data == null) throw new IllegalArgumentException("data cannot be null.");
if (skeleton == null) throw new IllegalArgumentException("skeleton cannot be null.");
this.data = data;
bones = new Array(data.bones.size);
for (BoneData boneData : data.bones)
bones.add(skeleton.bones.get(boneData.index));
target = skeleton.bones.get(data.target.index);
mixRotate = data.mixRotate;
mixX = data.mixX;
mixY = data.mixY;
mixScaleX = data.mixScaleX;
mixScaleY = data.mixScaleY;
mixShearY = data.mixShearY;
}
/** Copy constructor. */
public TransformConstraint (TransformConstraint constraint, Skeleton skeleton) {
this(constraint.data, skeleton);
mixRotate = constraint.mixRotate;
mixX = constraint.mixX;
mixY = constraint.mixY;
mixScaleX = constraint.mixScaleX;
mixScaleY = constraint.mixScaleY;
mixShearY = constraint.mixShearY;
}
public void setToSetupPose () {
TransformConstraintData data = this.data;
mixRotate = data.mixRotate;
mixX = data.mixX;
mixY = data.mixY;
mixScaleX = data.mixScaleX;
mixScaleY = data.mixScaleY;
mixShearY = data.mixShearY;
}
/** Applies the constraint to the constrained bones. */
public void update (Physics physics) {
if (mixRotate == 0 && mixX == 0 && mixY == 0 && mixScaleX == 0 && mixScaleY == 0 && mixShearY == 0) return;
if (data.local) {
if (data.relative)
applyRelativeLocal();
else
applyAbsoluteLocal();
} else {
if (data.relative)
applyRelativeWorld();
else
applyAbsoluteWorld();
}
}
private void applyAbsoluteWorld () {
float mixRotate = this.mixRotate, mixX = this.mixX, mixY = this.mixY, mixScaleX = this.mixScaleX,
mixScaleY = this.mixScaleY, mixShearY = this.mixShearY;
boolean translate = mixX != 0 || mixY != 0;
Bone target = this.target;
float ta = target.a, tb = target.b, tc = target.c, td = target.d;
float degRadReflect = ta * td - tb * tc > 0 ? degRad : -degRad;
float offsetRotation = data.offsetRotation * degRadReflect, offsetShearY = data.offsetShearY * degRadReflect;
Object[] bones = this.bones.items;
for (int i = 0, n = this.bones.size; i < n; i++) {
Bone bone = (Bone)bones[i];
if (mixRotate != 0) {
float a = bone.a, b = bone.b, c = bone.c, d = bone.d;
float r = atan2(tc, ta) - atan2(c, a) + offsetRotation;
if (r > PI)
r -= PI2;
else if (r < -PI) //
r += PI2;
r *= mixRotate;
float cos = cos(r), sin = sin(r);
bone.a = cos * a - sin * c;
bone.b = cos * b - sin * d;
bone.c = sin * a + cos * c;
bone.d = sin * b + cos * d;
}
if (translate) {
Vector2 temp = this.temp;
target.localToWorld(temp.set(data.offsetX, data.offsetY));
bone.worldX += (temp.x - bone.worldX) * mixX;
bone.worldY += (temp.y - bone.worldY) * mixY;
}
if (mixScaleX != 0) {
float s = (float)Math.sqrt(bone.a * bone.a + bone.c * bone.c);
if (s != 0) s = (s + ((float)Math.sqrt(ta * ta + tc * tc) - s + data.offsetScaleX) * mixScaleX) / s;
bone.a *= s;
bone.c *= s;
}
if (mixScaleY != 0) {
float s = (float)Math.sqrt(bone.b * bone.b + bone.d * bone.d);
if (s != 0) s = (s + ((float)Math.sqrt(tb * tb + td * td) - s + data.offsetScaleY) * mixScaleY) / s;
bone.b *= s;
bone.d *= s;
}
if (mixShearY > 0) {
float b = bone.b, d = bone.d;
float by = atan2(d, b);
float r = atan2(td, tb) - atan2(tc, ta) - (by - atan2(bone.c, bone.a));
if (r > PI)
r -= PI2;
else if (r < -PI) //
r += PI2;
r = by + (r + offsetShearY) * mixShearY;
float s = (float)Math.sqrt(b * b + d * d);
bone.b = cos(r) * s;
bone.d = sin(r) * s;
}
bone.updateAppliedTransform();
}
}
private void applyRelativeWorld () {
float mixRotate = this.mixRotate, mixX = this.mixX, mixY = this.mixY, mixScaleX = this.mixScaleX,
mixScaleY = this.mixScaleY, mixShearY = this.mixShearY;
boolean translate = mixX != 0 || mixY != 0;
Bone target = this.target;
float ta = target.a, tb = target.b, tc = target.c, td = target.d;
float degRadReflect = ta * td - tb * tc > 0 ? degRad : -degRad;
float offsetRotation = data.offsetRotation * degRadReflect, offsetShearY = data.offsetShearY * degRadReflect;
Object[] bones = this.bones.items;
for (int i = 0, n = this.bones.size; i < n; i++) {
Bone bone = (Bone)bones[i];
if (mixRotate != 0) {
float a = bone.a, b = bone.b, c = bone.c, d = bone.d;
float r = atan2(tc, ta) + offsetRotation;
if (r > PI)
r -= PI2;
else if (r < -PI) //
r += PI2;
r *= mixRotate;
float cos = cos(r), sin = sin(r);
bone.a = cos * a - sin * c;
bone.b = cos * b - sin * d;
bone.c = sin * a + cos * c;
bone.d = sin * b + cos * d;
}
if (translate) {
Vector2 temp = this.temp;
target.localToWorld(temp.set(data.offsetX, data.offsetY));
bone.worldX += temp.x * mixX;
bone.worldY += temp.y * mixY;
}
if (mixScaleX != 0) {
float s = ((float)Math.sqrt(ta * ta + tc * tc) - 1 + data.offsetScaleX) * mixScaleX + 1;
bone.a *= s;
bone.c *= s;
}
if (mixScaleY != 0) {
float s = ((float)Math.sqrt(tb * tb + td * td) - 1 + data.offsetScaleY) * mixScaleY + 1;
bone.b *= s;
bone.d *= s;
}
if (mixShearY > 0) {
float r = atan2(td, tb) - atan2(tc, ta);
if (r > PI)
r -= PI2;
else if (r < -PI) //
r += PI2;
float b = bone.b, d = bone.d;
r = atan2(d, b) + (r - PI / 2 + offsetShearY) * mixShearY;
float s = (float)Math.sqrt(b * b + d * d);
bone.b = cos(r) * s;
bone.d = sin(r) * s;
}
bone.updateAppliedTransform();
}
}
private void applyAbsoluteLocal () {
float mixRotate = this.mixRotate, mixX = this.mixX, mixY = this.mixY, mixScaleX = this.mixScaleX,
mixScaleY = this.mixScaleY, mixShearY = this.mixShearY;
Bone target = this.target;
Object[] bones = this.bones.items;
for (int i = 0, n = this.bones.size; i < n; i++) {
Bone bone = (Bone)bones[i];
float rotation = bone.arotation;
if (mixRotate != 0) rotation += (target.arotation - rotation + data.offsetRotation) * mixRotate;
float x = bone.ax, y = bone.ay;
x += (target.ax - x + data.offsetX) * mixX;
y += (target.ay - y + data.offsetY) * mixY;
float scaleX = bone.ascaleX, scaleY = bone.ascaleY;
if (mixScaleX != 0 && scaleX != 0)
scaleX = (scaleX + (target.ascaleX - scaleX + data.offsetScaleX) * mixScaleX) / scaleX;
if (mixScaleY != 0 && scaleY != 0)
scaleY = (scaleY + (target.ascaleY - scaleY + data.offsetScaleY) * mixScaleY) / scaleY;
float shearY = bone.ashearY;
if (mixShearY != 0) shearY += (target.ashearY - shearY + data.offsetShearY) * mixShearY;
bone.updateWorldTransform(x, y, rotation, scaleX, scaleY, bone.ashearX, shearY);
}
}
private void applyRelativeLocal () {
float mixRotate = this.mixRotate, mixX = this.mixX, mixY = this.mixY, mixScaleX = this.mixScaleX,
mixScaleY = this.mixScaleY, mixShearY = this.mixShearY;
Bone target = this.target;
Object[] bones = this.bones.items;
for (int i = 0, n = this.bones.size; i < n; i++) {
Bone bone = (Bone)bones[i];
float rotation = bone.arotation + (target.arotation + data.offsetRotation) * mixRotate;
float x = bone.ax + (target.ax + data.offsetX) * mixX;
float y = bone.ay + (target.ay + data.offsetY) * mixY;
float scaleX = bone.ascaleX * (((target.ascaleX - 1 + data.offsetScaleX) * mixScaleX) + 1);
float scaleY = bone.ascaleY * (((target.ascaleY - 1 + data.offsetScaleY) * mixScaleY) + 1);
float shearY = bone.ashearY + (target.ashearY + data.offsetShearY) * mixShearY;
bone.updateWorldTransform(x, y, rotation, scaleX, scaleY, bone.ashearX, shearY);
}
}
/** The bones that will be modified by this transform constraint. */
public Array getBones () {
return bones;
}
/** The target bone whose world transform will be copied to the constrained bones. */
public Bone getTarget () {
return target;
}
public void setTarget (Bone target) {
if (target == null) throw new IllegalArgumentException("target cannot be null.");
this.target = target;
}
/** A percentage (0-1) that controls the mix between the constrained and unconstrained rotation. */
public float getMixRotate () {
return mixRotate;
}
public void setMixRotate (float mixRotate) {
this.mixRotate = mixRotate;
}
/** A percentage (0-1) that controls the mix between the constrained and unconstrained translation X. */
public float getMixX () {
return mixX;
}
public void setMixX (float mixX) {
this.mixX = mixX;
}
/** A percentage (0-1) that controls the mix between the constrained and unconstrained translation Y. */
public float getMixY () {
return mixY;
}
public void setMixY (float mixY) {
this.mixY = mixY;
}
/** A percentage (0-1) that controls the mix between the constrained and unconstrained scale X. */
public float getMixScaleX () {
return mixScaleX;
}
public void setMixScaleX (float mixScaleX) {
this.mixScaleX = mixScaleX;
}
/** A percentage (0-1) that controls the mix between the constrained and unconstrained scale X. */
public float getMixScaleY () {
return mixScaleY;
}
public void setMixScaleY (float mixScaleY) {
this.mixScaleY = mixScaleY;
}
/** A percentage (0-1) that controls the mix between the constrained and unconstrained shear Y. */
public float getMixShearY () {
return mixShearY;
}
public void setMixShearY (float mixShearY) {
this.mixShearY = mixShearY;
}
public boolean isActive () {
return active;
}
/** The transform constraint's setup pose data. */
public TransformConstraintData getData () {
return data;
}
public String toString () {
return data.name;
}
}