All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.esotericsoftware.kryo.util.ObjectMap Maven / Gradle / Ivy

Go to download

Fast, efficient Java serialization. This contains the shaded reflectasm jar to prevent conflicts with other versions of asm.

There is a newer version: 4.0.3
Show newest version
/* Copyright (c) 2008, Nathan Sweet
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
 * conditions are met:
 * 
 * - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
 * disclaimer in the documentation and/or other materials provided with the distribution.
 * - Neither the name of Esoteric Software nor the names of its contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
 * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
 * SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */

package com.esotericsoftware.kryo.util;

import java.util.ArrayList;
import java.util.Iterator;
import java.util.NoSuchElementException;
import java.util.Random;

/** An unordered map. This implementation is a cuckoo hash map using 3 hashes (if table size is less than 2^16) or 4 hashes
 *  (if table size is greater than or equal to 2^16), random walking, and a small stash for problematic keys Null keys are not
 *  allowed. Null values are allowed. No allocation is done except when growing the table size. 
*
* This map performs very fast get, containsKey, and remove (typically O(1), worst case O(log(n))). Put may be a bit slower, * depending on hash collisions. Load factors greater than 0.91 greatly increase the chances the map will have to rehash to the * next higher POT size. * @author Nathan Sweet */ public class ObjectMap { // primes for hash functions 2, 3, and 4 private static final int PRIME2 = 0xbe1f14b1; private static final int PRIME3 = 0xb4b82e39; private static final int PRIME4 = 0xced1c241; static Random random = new Random(); public int size; K[] keyTable; V[] valueTable; int capacity, stashSize; private float loadFactor; private int hashShift, mask, threshold; private int stashCapacity; private int pushIterations; private boolean isBigTable; /** Creates a new map with an initial capacity of 32 and a load factor of 0.8. This map will hold 25 items before growing the * backing table. */ public ObjectMap () { this(32, 0.8f); } /** Creates a new map with a load factor of 0.8. This map will hold initialCapacity * 0.8 items before growing the backing * table. */ public ObjectMap (int initialCapacity) { this(initialCapacity, 0.8f); } /** Creates a new map with the specified initial capacity and load factor. This map will hold initialCapacity * loadFactor items * before growing the backing table. */ public ObjectMap (int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("initialCapacity must be >= 0: " + initialCapacity); if (initialCapacity > 1 << 30) throw new IllegalArgumentException("initialCapacity is too large: " + initialCapacity); capacity = nextPowerOfTwo(initialCapacity); if (loadFactor <= 0) throw new IllegalArgumentException("loadFactor must be > 0: " + loadFactor); this.loadFactor = loadFactor; // big table is when capacity >= 2^16 isBigTable = (capacity >>> 16) != 0 ? true : false; threshold = (int)(capacity * loadFactor); mask = capacity - 1; hashShift = 31 - Integer.numberOfTrailingZeros(capacity); stashCapacity = Math.max(3, (int)Math.ceil(Math.log(capacity)) * 2); pushIterations = Math.max(Math.min(capacity, 8), (int)Math.sqrt(capacity) / 8); keyTable = (K[])new Object[capacity + stashCapacity]; valueTable = (V[])new Object[keyTable.length]; } /** Creates a new map identical to the specified map. */ public ObjectMap (ObjectMap map) { this(map.capacity, map.loadFactor); stashSize = map.stashSize; System.arraycopy(map.keyTable, 0, keyTable, 0, map.keyTable.length); System.arraycopy(map.valueTable, 0, valueTable, 0, map.valueTable.length); size = map.size; } /** Returns the old value associated with the specified key, or null. */ public V put (K key, V value) { if (key == null) throw new IllegalArgumentException("key cannot be null."); return put_internal(key, value); } private V put_internal (K key, V value) { // avoid getfield opcode K[] keyTable = this.keyTable; int mask = this.mask; boolean isBigTable = this.isBigTable; // Check for existing keys. int hashCode = key.hashCode(); int index1 = hashCode & mask; K key1 = keyTable[index1]; if (key.equals(key1)) { V oldValue = valueTable[index1]; valueTable[index1] = value; return oldValue; } int index2 = hash2(hashCode); K key2 = keyTable[index2]; if (key.equals(key2)) { V oldValue = valueTable[index2]; valueTable[index2] = value; return oldValue; } int index3 = hash3(hashCode); K key3 = keyTable[index3]; if (key.equals(key3)) { V oldValue = valueTable[index3]; valueTable[index3] = value; return oldValue; } int index4 = -1; K key4 = null; if (isBigTable) { index4 = hash4(hashCode); key4 = keyTable[index4]; if (key.equals(key4)) { V oldValue = valueTable[index4]; valueTable[index4] = value; return oldValue; } } // Update key in the stash. for (int i = capacity, n = i + stashSize; i < n; i++) { if (key.equals(keyTable[i])) { V oldValue = valueTable[i]; valueTable[i] = value; return oldValue; } } // Check for empty buckets. if (key1 == null) { keyTable[index1] = key; valueTable[index1] = value; if (size++ >= threshold) resize(capacity << 1); return null; } if (key2 == null) { keyTable[index2] = key; valueTable[index2] = value; if (size++ >= threshold) resize(capacity << 1); return null; } if (key3 == null) { keyTable[index3] = key; valueTable[index3] = value; if (size++ >= threshold) resize(capacity << 1); return null; } if (isBigTable && key4 == null) { keyTable[index4] = key; valueTable[index4] = value; if (size++ >= threshold) resize(capacity << 1); return null; } push(key, value, index1, key1, index2, key2, index3, key3, index4, key4); return null; } public void putAll (ObjectMap map) { ensureCapacity(map.size); for (Entry entry : map.entries()) put(entry.key, entry.value); } /** Skips checks for existing keys. */ private void putResize (K key, V value) { // Check for empty buckets. int hashCode = key.hashCode(); int index1 = hashCode & mask; K key1 = keyTable[index1]; if (key1 == null) { keyTable[index1] = key; valueTable[index1] = value; if (size++ >= threshold) resize(capacity << 1); return; } int index2 = hash2(hashCode); K key2 = keyTable[index2]; if (key2 == null) { keyTable[index2] = key; valueTable[index2] = value; if (size++ >= threshold) resize(capacity << 1); return; } int index3 = hash3(hashCode); K key3 = keyTable[index3]; if (key3 == null) { keyTable[index3] = key; valueTable[index3] = value; if (size++ >= threshold) resize(capacity << 1); return; } int index4 = -1; K key4 = null; if (isBigTable) { index4 = hash4(hashCode); key4 = keyTable[index4]; if (key4 == null) { keyTable[index4] = key; valueTable[index4] = value; if (size++ >= threshold) resize(capacity << 1); return; } } push(key, value, index1, key1, index2, key2, index3, key3, index4, key4); } private void push (K insertKey, V insertValue, int index1, K key1, int index2, K key2, int index3, K key3, int index4, K key4) { // avoid getfield opcode K[] keyTable = this.keyTable; V[] valueTable = this.valueTable; int mask = this.mask; boolean isBigTable = this.isBigTable; // Push keys until an empty bucket is found. K evictedKey; V evictedValue; int i = 0, pushIterations = this.pushIterations; int n = isBigTable ? 4 : 3; do { // Replace the key and value for one of the hashes. switch (random.nextInt(n)) { case 0: evictedKey = key1; evictedValue = valueTable[index1]; keyTable[index1] = insertKey; valueTable[index1] = insertValue; break; case 1: evictedKey = key2; evictedValue = valueTable[index2]; keyTable[index2] = insertKey; valueTable[index2] = insertValue; break; case 2: evictedKey = key3; evictedValue = valueTable[index3]; keyTable[index3] = insertKey; valueTable[index3] = insertValue; break; default: evictedKey = key4; evictedValue = valueTable[index4]; keyTable[index4] = insertKey; valueTable[index4] = insertValue; break; } // If the evicted key hashes to an empty bucket, put it there and stop. int hashCode = evictedKey.hashCode(); index1 = hashCode & mask; key1 = keyTable[index1]; if (key1 == null) { keyTable[index1] = evictedKey; valueTable[index1] = evictedValue; if (size++ >= threshold) resize(capacity << 1); return; } index2 = hash2(hashCode); key2 = keyTable[index2]; if (key2 == null) { keyTable[index2] = evictedKey; valueTable[index2] = evictedValue; if (size++ >= threshold) resize(capacity << 1); return; } index3 = hash3(hashCode); key3 = keyTable[index3]; if (key3 == null) { keyTable[index3] = evictedKey; valueTable[index3] = evictedValue; if (size++ >= threshold) resize(capacity << 1); return; } if (isBigTable) { index4 = hash4(hashCode); key4 = keyTable[index4]; if (key4 == null) { keyTable[index4] = evictedKey; valueTable[index4] = evictedValue; if (size++ >= threshold) resize(capacity << 1); return; } } if (++i == pushIterations) break; insertKey = evictedKey; insertValue = evictedValue; } while (true); putStash(evictedKey, evictedValue); } private void putStash (K key, V value) { if (stashSize == stashCapacity) { // Too many pushes occurred and the stash is full, increase the table size. resize(capacity << 1); put_internal(key, value); return; } // Store key in the stash. int index = capacity + stashSize; keyTable[index] = key; valueTable[index] = value; stashSize++; size++; } public V get (K key) { int hashCode = key.hashCode(); int index = hashCode & mask; if (!key.equals(keyTable[index])) { index = hash2(hashCode); if (!key.equals(keyTable[index])) { index = hash3(hashCode); if (!key.equals(keyTable[index])) { if (isBigTable) { index = hash4(hashCode); if (!key.equals(keyTable[index])) return getStash(key); } else { return getStash(key); } } } } return valueTable[index]; } private V getStash (K key) { K[] keyTable = this.keyTable; for (int i = capacity, n = i + stashSize; i < n; i++) if (key.equals(keyTable[i])) return valueTable[i]; return null; } /** Returns the value for the specified key, or the default value if the key is not in the map. */ public V get (K key, V defaultValue) { int hashCode = key.hashCode(); int index = hashCode & mask; if (!key.equals(keyTable[index])) { index = hash2(hashCode); if (!key.equals(keyTable[index])) { index = hash3(hashCode); if (!key.equals(keyTable[index])) { if (isBigTable) { index = hash4(hashCode); if (!key.equals(keyTable[index])) return getStash(key, defaultValue); } else { return getStash(key, defaultValue); } } } } return valueTable[index]; } private V getStash (K key, V defaultValue) { K[] keyTable = this.keyTable; for (int i = capacity, n = i + stashSize; i < n; i++) if (key.equals(keyTable[i])) return valueTable[i]; return defaultValue; } public V remove (K key) { int hashCode = key.hashCode(); int index = hashCode & mask; if (key.equals(keyTable[index])) { keyTable[index] = null; V oldValue = valueTable[index]; valueTable[index] = null; size--; return oldValue; } index = hash2(hashCode); if (key.equals(keyTable[index])) { keyTable[index] = null; V oldValue = valueTable[index]; valueTable[index] = null; size--; return oldValue; } index = hash3(hashCode); if (key.equals(keyTable[index])) { keyTable[index] = null; V oldValue = valueTable[index]; valueTable[index] = null; size--; return oldValue; } if (isBigTable) { index = hash4(hashCode); if (key.equals(keyTable[index])) { keyTable[index] = null; V oldValue = valueTable[index]; valueTable[index] = null; size--; return oldValue; } } return removeStash(key); } V removeStash (K key) { K[] keyTable = this.keyTable; for (int i = capacity, n = i + stashSize; i < n; i++) { if (key.equals(keyTable[i])) { V oldValue = valueTable[i]; removeStashIndex(i); size--; return oldValue; } } return null; } void removeStashIndex (int index) { // If the removed location was not last, move the last tuple to the removed location. stashSize--; int lastIndex = capacity + stashSize; if (index < lastIndex) { keyTable[index] = keyTable[lastIndex]; valueTable[index] = valueTable[lastIndex]; valueTable[lastIndex] = null; } else valueTable[index] = null; } /** Reduces the size of the backing arrays to be the specified capacity or less. If the capacity is already less, nothing is * done. If the map contains more items than the specified capacity, the next highest power of two capacity is used instead. */ public void shrink (int maximumCapacity) { if (maximumCapacity < 0) throw new IllegalArgumentException("maximumCapacity must be >= 0: " + maximumCapacity); if (size > maximumCapacity) maximumCapacity = size; if (capacity <= maximumCapacity) return; maximumCapacity = nextPowerOfTwo(maximumCapacity); resize(maximumCapacity); } /** Clears the map and reduces the size of the backing arrays to be the specified capacity if they are larger. */ public void clear (int maximumCapacity) { if (capacity <= maximumCapacity) { clear(); return; } size = 0; resize(maximumCapacity); } public void clear () { K[] keyTable = this.keyTable; V[] valueTable = this.valueTable; for (int i = capacity + stashSize; i-- > 0;) { keyTable[i] = null; valueTable[i] = null; } size = 0; stashSize = 0; } /** Returns true if the specified value is in the map. Note this traverses the entire map and compares every value, which may be * an expensive operation. * @param identity If true, uses == to compare the specified value with values in the map. If false, uses * {@link #equals(Object)}. */ public boolean containsValue (Object value, boolean identity) { V[] valueTable = this.valueTable; if (value == null) { K[] keyTable = this.keyTable; for (int i = capacity + stashSize; i-- > 0;) if (keyTable[i] != null && valueTable[i] == null) return true; } else if (identity) { for (int i = capacity + stashSize; i-- > 0;) if (valueTable[i] == value) return true; } else { for (int i = capacity + stashSize; i-- > 0;) if (value.equals(valueTable[i])) return true; } return false; } public boolean containsKey (K key) { int hashCode = key.hashCode(); int index = hashCode & mask; if (!key.equals(keyTable[index])) { index = hash2(hashCode); if (!key.equals(keyTable[index])) { index = hash3(hashCode); if (!key.equals(keyTable[index])) { if (isBigTable) { index = hash4(hashCode); if (!key.equals(keyTable[index])) return containsKeyStash(key); } else { return containsKeyStash(key); } } } } return true; } private boolean containsKeyStash (K key) { K[] keyTable = this.keyTable; for (int i = capacity, n = i + stashSize; i < n; i++) if (key.equals(keyTable[i])) return true; return false; } /** Returns the key for the specified value, or null if it is not in the map. Note this traverses the entire map and compares * every value, which may be an expensive operation. * @param identity If true, uses == to compare the specified value with values in the map. If false, uses * {@link #equals(Object)}. */ public K findKey (Object value, boolean identity) { V[] valueTable = this.valueTable; if (value == null) { K[] keyTable = this.keyTable; for (int i = capacity + stashSize; i-- > 0;) if (keyTable[i] != null && valueTable[i] == null) return keyTable[i]; } else if (identity) { for (int i = capacity + stashSize; i-- > 0;) if (valueTable[i] == value) return keyTable[i]; } else { for (int i = capacity + stashSize; i-- > 0;) if (value.equals(valueTable[i])) return keyTable[i]; } return null; } /** Increases the size of the backing array to acommodate the specified number of additional items. Useful before adding many * items to avoid multiple backing array resizes. */ public void ensureCapacity (int additionalCapacity) { int sizeNeeded = size + additionalCapacity; if (sizeNeeded >= threshold) resize(nextPowerOfTwo((int)(sizeNeeded / loadFactor))); } private void resize (int newSize) { int oldEndIndex = capacity + stashSize; capacity = newSize; threshold = (int)(newSize * loadFactor); mask = newSize - 1; hashShift = 31 - Integer.numberOfTrailingZeros(newSize); stashCapacity = Math.max(3, (int)Math.ceil(Math.log(newSize)) * 2); pushIterations = Math.max(Math.min(newSize, 8), (int)Math.sqrt(newSize) / 8); // big table is when capacity >= 2^16 isBigTable = (capacity >>> 16) != 0 ? true : false; K[] oldKeyTable = keyTable; V[] oldValueTable = valueTable; keyTable = (K[])new Object[newSize + stashCapacity]; valueTable = (V[])new Object[newSize + stashCapacity]; int oldSize = size; size = 0; stashSize = 0; if (oldSize > 0) { for (int i = 0; i < oldEndIndex; i++) { K key = oldKeyTable[i]; if (key != null) putResize(key, oldValueTable[i]); } } } private int hash2 (int h) { h *= PRIME2; return (h ^ h >>> hashShift) & mask; } private int hash3 (int h) { h *= PRIME3; return (h ^ h >>> hashShift) & mask; } private int hash4 (int h) { h *= PRIME4; return (h ^ h >>> hashShift) & mask; } public String toString () { if (size == 0) return "{}"; StringBuilder buffer = new StringBuilder(32); buffer.append('{'); K[] keyTable = this.keyTable; V[] valueTable = this.valueTable; int i = keyTable.length; while (i-- > 0) { K key = keyTable[i]; if (key == null) continue; buffer.append(key); buffer.append('='); buffer.append(valueTable[i]); break; } while (i-- > 0) { K key = keyTable[i]; if (key == null) continue; buffer.append(", "); buffer.append(key); buffer.append('='); buffer.append(valueTable[i]); } buffer.append('}'); return buffer.toString(); } /** Returns an iterator for the entries in the map. Remove is supported. */ public Entries entries () { return new Entries(this); } /** Returns an iterator for the values in the map. Remove is supported. */ public Values values () { return new Values(this); } /** Returns an iterator for the keys in the map. Remove is supported. */ public Keys keys () { return new Keys(this); } static public class Entry { public K key; public V value; public String toString () { return key + "=" + value; } } static private class MapIterator { public boolean hasNext; final ObjectMap map; int nextIndex, currentIndex; public MapIterator (ObjectMap map) { this.map = map; reset(); } public void reset () { currentIndex = -1; nextIndex = -1; advance(); } void advance () { hasNext = false; K[] keyTable = map.keyTable; for (int n = map.capacity + map.stashSize; ++nextIndex < n;) { if (keyTable[nextIndex] != null) { hasNext = true; break; } } } public void remove () { if (currentIndex < 0) throw new IllegalStateException("next must be called before remove."); if (currentIndex >= map.capacity) { map.removeStashIndex(currentIndex); nextIndex = currentIndex - 1; advance(); } else { map.keyTable[currentIndex] = null; map.valueTable[currentIndex] = null; } currentIndex = -1; map.size--; } } static public class Entries extends MapIterator implements Iterable>, Iterator> { Entry entry = new Entry(); public Entries (ObjectMap map) { super(map); } /** Note the same entry instance is returned each time this method is called. */ public Entry next () { if (!hasNext) throw new NoSuchElementException(); K[] keyTable = map.keyTable; entry.key = keyTable[nextIndex]; entry.value = map.valueTable[nextIndex]; currentIndex = nextIndex; advance(); return entry; } public boolean hasNext () { return hasNext; } public Iterator> iterator () { return this; } } static public class Values extends MapIterator implements Iterable, Iterator { public Values (ObjectMap map) { super((ObjectMap)map); } public boolean hasNext () { return hasNext; } public V next () { if (!hasNext) throw new NoSuchElementException(); V value = map.valueTable[nextIndex]; currentIndex = nextIndex; advance(); return value; } public Iterator iterator () { return this; } /** Returns a new array containing the remaining values. */ public ArrayList toArray () { ArrayList array = new ArrayList(map.size); while (hasNext) array.add(next()); return array; } /** Adds the remaining values to the specified array. */ public void toArray (ArrayList array) { while (hasNext) array.add(next()); } } static public class Keys extends MapIterator implements Iterable, Iterator { public Keys (ObjectMap map) { super((ObjectMap)map); } public boolean hasNext () { return hasNext; } public K next () { if (!hasNext) throw new NoSuchElementException(); K key = map.keyTable[nextIndex]; currentIndex = nextIndex; advance(); return key; } public Iterator iterator () { return this; } /** Returns a new array containing the remaining keys. */ public ArrayList toArray () { ArrayList array = new ArrayList(map.size); while (hasNext) array.add(next()); return array; } } static public int nextPowerOfTwo (int value) { if (value == 0) return 1; value--; value |= value >> 1; value |= value >> 2; value |= value >> 4; value |= value >> 8; value |= value >> 16; return value + 1; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy