com.espertech.esper.collection.apachecommons.AbstractHashedMap Maven / Gradle / Ivy
Show all versions of esper Show documentation
/*
***************************************************************************************
* Copyright (C) 2006 EsperTech, Inc. All rights reserved. *
* http://www.espertech.com/esper *
* http://www.espertech.com *
* ---------------------------------------------------------------------------------- *
* The software in this package is published under the terms of the GPL license *
* a copy of which has been included with this distribution in the license.txt file. *
***************************************************************************************
*/
/*
* Credit: Apache Commons Collections
*/
package com.espertech.esper.collection.apachecommons;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.util.*;
/**
* An abstract implementation of a hash-based map which provides numerous points for
* subclasses to override.
*
* This class implements all the features necessary for a subclass hash-based map.
* Key-value entries are stored in instances of the HashEntry
class,
* which can be overridden and replaced. The iterators can similarly be replaced,
* without the need to replace the KeySet, EntrySet and Values view classes.
*
* Overridable methods are provided to change the default hashing behaviour, and
* to change how entries are added to and removed from the map. Hopefully, all you
* need for unusual subclasses is here.
*
* NOTE: From Commons Collections 3.1 this class extends AbstractMap.
* This is to provide backwards compatibility for ReferenceMap between v3.0 and v3.1.
* This extends clause will be removed in v4.0.
*
* @author java util HashMap
* @author Stephen Colebourne
* @author Christian Siefkes
* @version $Revision$ $Date$
* @since Commons Collections 3.0
*/
public class AbstractHashedMap extends AbstractMap implements IterableMap {
/**
* Message.
*/
protected static final String NO_NEXT_ENTRY = "No next() entry in the iteration";
/**
* Message.
*/
protected static final String NO_PREVIOUS_ENTRY = "No previous() entry in the iteration";
/**
* Message.
*/
protected static final String REMOVE_INVALID = "remove() can only be called once after next()";
/**
* Message.
*/
protected static final String GETKEY_INVALID = "getKey() can only be called after next() and before remove()";
/**
* Message.
*/
protected static final String GETVALUE_INVALID = "getValue() can only be called after next() and before remove()";
/**
* Message.
*/
protected static final String SETVALUE_INVALID = "setValue() can only be called after next() and before remove()";
/**
* The default capacity to use
*/
protected static final int DEFAULT_CAPACITY = 16;
/**
* The default threshold to use
*/
protected static final int DEFAULT_THRESHOLD = 12;
/**
* The default load factor to use
*/
protected static final float DEFAULT_LOAD_FACTOR = 0.75f;
/**
* The maximum capacity allowed
*/
protected static final int MAXIMUM_CAPACITY = 1 << 30;
/**
* An object for masking null
*/
protected static final Object NULL = new Object();
/**
* Load factor, normally 0.75
*/
protected transient float loadFactor;
/**
* The size of the map
*/
protected transient int size;
/**
* Map entries
*/
protected transient HashEntry[] data;
/**
* Size at which to rehash
*/
protected transient int threshold;
/**
* Modification count for iterators
*/
protected transient int modCount;
/**
* Entry set
*/
protected transient EntrySet entrySet;
/**
* Key set
*/
protected transient KeySet keySet;
/**
* Values
*/
protected transient Values values;
/**
* Constructor only used in deserialization, do not use otherwise.
*/
protected AbstractHashedMap() {
super();
}
/**
* Constructor which performs no validation on the passed in parameters.
*
* @param initialCapacity the initial capacity, must be a power of two
* @param loadFactor the load factor, must be > 0.0f and generally < 1.0f
* @param threshold the threshold, must be sensible
*/
protected AbstractHashedMap(int initialCapacity, float loadFactor, int threshold) {
super();
this.loadFactor = loadFactor;
this.data = new HashEntry[initialCapacity];
this.threshold = threshold;
init();
}
/**
* Constructs a new, empty map with the specified initial capacity and
* default load factor.
*
* @param initialCapacity the initial capacity
* @throws IllegalArgumentException if the initial capacity is less than one
*/
protected AbstractHashedMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
/**
* Constructs a new, empty map with the specified initial capacity and
* load factor.
*
* @param initialCapacity the initial capacity
* @param loadFactor the load factor
* @throws IllegalArgumentException if the initial capacity is less than one
* or if the load factor is less than or equal to zero
*/
protected AbstractHashedMap(int initialCapacity, float loadFactor) {
super();
if (initialCapacity < 1) {
throw new IllegalArgumentException("Initial capacity must be greater than 0");
}
if (loadFactor <= 0.0f || Float.isNaN(loadFactor)) {
throw new IllegalArgumentException("Load factor must be greater than 0");
}
this.loadFactor = loadFactor;
initialCapacity = calculateNewCapacity(initialCapacity);
this.threshold = calculateThreshold(initialCapacity, loadFactor);
this.data = new HashEntry[initialCapacity];
init();
}
/**
* Constructor copying elements from another map.
*
* @param map the map to copy
* @throws NullPointerException if the map is null
*/
protected AbstractHashedMap(Map map) {
this(Math.max(2 * map.size(), DEFAULT_CAPACITY), DEFAULT_LOAD_FACTOR);
putAll(map);
}
/**
* Initialise subclasses during construction, cloning or deserialization.
*/
protected void init() {
}
//-----------------------------------------------------------------------
/**
* Gets the value mapped to the key specified.
*
* @param key the key
* @return the mapped value, null if no match
*/
public Object get(Object key) {
key = convertKey(key);
int hashCode = hash(key);
HashEntry entry = data[hashIndex(hashCode, data.length)]; // no local for hash index
while (entry != null) {
if (entry.hashCode == hashCode && isEqualKey(key, entry.key)) {
return entry.getValue();
}
entry = entry.next;
}
return null;
}
/**
* Gets the size of the map.
*
* @return the size
*/
public int size() {
return size;
}
/**
* Checks whether the map is currently empty.
*
* @return true if the map is currently size zero
*/
public boolean isEmpty() {
return size == 0;
}
//-----------------------------------------------------------------------
/**
* Checks whether the map contains the specified key.
*
* @param key the key to search for
* @return true if the map contains the key
*/
public boolean containsKey(Object key) {
key = convertKey(key);
int hashCode = hash(key);
HashEntry entry = data[hashIndex(hashCode, data.length)]; // no local for hash index
while (entry != null) {
if (entry.hashCode == hashCode && isEqualKey(key, entry.key)) {
return true;
}
entry = entry.next;
}
return false;
}
/**
* Checks whether the map contains the specified value.
*
* @param value the value to search for
* @return true if the map contains the value
*/
public boolean containsValue(Object value) {
if (value == null) {
for (int i = 0, isize = data.length; i < isize; i++) {
HashEntry entry = data[i];
while (entry != null) {
if (entry.getValue() == null) {
return true;
}
entry = entry.next;
}
}
} else {
for (int i = 0, isize = data.length; i < isize; i++) {
HashEntry entry = data[i];
while (entry != null) {
if (isEqualValue(value, entry.getValue())) {
return true;
}
entry = entry.next;
}
}
}
return false;
}
//-----------------------------------------------------------------------
/**
* Puts a key-value mapping into this map.
*
* @param key the key to add
* @param value the value to add
* @return the value previously mapped to this key, null if none
*/
public Object put(Object key, Object value) {
key = convertKey(key);
int hashCode = hash(key);
int index = hashIndex(hashCode, data.length);
HashEntry entry = data[index];
while (entry != null) {
if (entry.hashCode == hashCode && isEqualKey(key, entry.key)) {
Object oldValue = entry.getValue();
updateEntry(entry, value);
return oldValue;
}
entry = entry.next;
}
addMapping(index, hashCode, key, value);
return null;
}
/**
* Puts all the values from the specified map into this map.
*
* This implementation iterates around the specified map and
* uses {@link #put(Object, Object)}.
*
* @param map the map to add
* @throws NullPointerException if the map is null
*/
public void putAll(Map map) {
int mapSize = map.size();
if (mapSize == 0) {
return;
}
int newSize = (int) ((size + mapSize) / loadFactor + 1);
ensureCapacity(calculateNewCapacity(newSize));
for (Iterator it = map.entrySet().iterator(); it.hasNext(); ) {
Map.Entry entry = (Map.Entry) it.next();
put(entry.getKey(), entry.getValue());
}
}
/**
* Removes the specified mapping from this map.
*
* @param key the mapping to remove
* @return the value mapped to the removed key, null if key not in map
*/
public Object remove(Object key) {
key = convertKey(key);
int hashCode = hash(key);
int index = hashIndex(hashCode, data.length);
HashEntry entry = data[index];
HashEntry previous = null;
while (entry != null) {
if (entry.hashCode == hashCode && isEqualKey(key, entry.key)) {
Object oldValue = entry.getValue();
removeMapping(entry, index, previous);
return oldValue;
}
previous = entry;
entry = entry.next;
}
return null;
}
/**
* Clears the map, resetting the size to zero and nullifying references
* to avoid garbage collection issues.
*/
public void clear() {
modCount++;
HashEntry[] data = this.data;
for (int i = data.length - 1; i >= 0; i--) {
data[i] = null;
}
size = 0;
}
//-----------------------------------------------------------------------
/**
* Converts input keys to another object for storage in the map.
* This implementation masks nulls.
* Subclasses can override this to perform alternate key conversions.
*
* The reverse conversion can be changed, if required, by overriding the
* getKey() method in the hash entry.
*
* @param key the key convert
* @return the converted key
*/
protected Object convertKey(Object key) {
return key == null ? NULL : key;
}
/**
* Gets the hash code for the key specified.
* This implementation uses the additional hashing routine from JDK1.4.
* Subclasses can override this to return alternate hash codes.
*
* @param key the key to get a hash code for
* @return the hash code
*/
protected int hash(Object key) {
// same as JDK 1.4
int h = key.hashCode();
h += ~(h << 9);
h ^= h >>> 14;
h += h << 4;
h ^= h >>> 10;
return h;
}
/**
* Compares two keys, in internal converted form, to see if they are equal.
* This implementation uses the equals method and assumes neither key is null.
* Subclasses can override this to match differently.
*
* @param key1 the first key to compare passed in from outside
* @param key2 the second key extracted from the entry via entry.key
* @return true if equal
*/
protected boolean isEqualKey(Object key1, Object key2) {
return key1 == key2 || key1.equals(key2);
}
/**
* Compares two values, in external form, to see if they are equal.
* This implementation uses the equals method and assumes neither value is null.
* Subclasses can override this to match differently.
*
* @param value1 the first value to compare passed in from outside
* @param value2 the second value extracted from the entry via getValue()
* @return true if equal
*/
protected boolean isEqualValue(Object value1, Object value2) {
return value1 == value2 || value1.equals(value2);
}
/**
* Gets the index into the data storage for the hashCode specified.
* This implementation uses the least significant bits of the hashCode.
* Subclasses can override this to return alternate bucketing.
*
* @param hashCode the hash code to use
* @param dataSize the size of the data to pick a bucket from
* @return the bucket index
*/
protected int hashIndex(int hashCode, int dataSize) {
return hashCode & (dataSize - 1);
}
//-----------------------------------------------------------------------
/**
* Gets the entry mapped to the key specified.
*
* This method exists for subclasses that may need to perform a multi-step
* process accessing the entry. The public methods in this class don't use this
* method to gain a small performance boost.
*
* @param key the key
* @return the entry, null if no match
*/
protected HashEntry getEntry(Object key) {
key = convertKey(key);
int hashCode = hash(key);
HashEntry entry = data[hashIndex(hashCode, data.length)]; // no local for hash index
while (entry != null) {
if (entry.hashCode == hashCode && isEqualKey(key, entry.key)) {
return entry;
}
entry = entry.next;
}
return null;
}
//-----------------------------------------------------------------------
/**
* Updates an existing key-value mapping to change the value.
*
* This implementation calls setValue()
on the entry.
* Subclasses could override to handle changes to the map.
*
* @param entry the entry to update
* @param newValue the new value to store
*/
protected void updateEntry(HashEntry entry, Object newValue) {
entry.setValue(newValue);
}
/**
* Reuses an existing key-value mapping, storing completely new data.
*
* This implementation sets all the data fields on the entry.
* Subclasses could populate additional entry fields.
*
* @param entry the entry to update, not null
* @param hashIndex the index in the data array
* @param hashCode the hash code of the key to add
* @param key the key to add
* @param value the value to add
*/
protected void reuseEntry(HashEntry entry, int hashIndex, int hashCode, Object key, Object value) {
entry.next = data[hashIndex];
entry.hashCode = hashCode;
entry.key = key;
entry.value = value;
}
//-----------------------------------------------------------------------
/**
* Adds a new key-value mapping into this map.
*
* This implementation calls createEntry()
, addEntry()
* and checkCapacity()
.
* It also handles changes to modCount
and size
.
* Subclasses could override to fully control adds to the map.
*
* @param hashIndex the index into the data array to store at
* @param hashCode the hash code of the key to add
* @param key the key to add
* @param value the value to add
*/
protected void addMapping(int hashIndex, int hashCode, Object key, Object value) {
modCount++;
HashEntry entry = createEntry(data[hashIndex], hashCode, key, value);
addEntry(entry, hashIndex);
size++;
checkCapacity();
}
/**
* Creates an entry to store the key-value data.
*
* This implementation creates a new HashEntry instance.
* Subclasses can override this to return a different storage class,
* or implement caching.
*
* @param next the next entry in sequence
* @param hashCode the hash code to use
* @param key the key to store
* @param value the value to store
* @return the newly created entry
*/
protected HashEntry createEntry(HashEntry next, int hashCode, Object key, Object value) {
return new HashEntry(next, hashCode, key, value);
}
/**
* Adds an entry into this map.
*
* This implementation adds the entry to the data storage table.
* Subclasses could override to handle changes to the map.
*
* @param entry the entry to add
* @param hashIndex the index into the data array to store at
*/
protected void addEntry(HashEntry entry, int hashIndex) {
data[hashIndex] = entry;
}
//-----------------------------------------------------------------------
/**
* Removes a mapping from the map.
*
* This implementation calls removeEntry()
and destroyEntry()
.
* It also handles changes to modCount
and size
.
* Subclasses could override to fully control removals from the map.
*
* @param entry the entry to remove
* @param hashIndex the index into the data structure
* @param previous the previous entry in the chain
*/
protected void removeMapping(HashEntry entry, int hashIndex, HashEntry previous) {
modCount++;
removeEntry(entry, hashIndex, previous);
size--;
destroyEntry(entry);
}
/**
* Removes an entry from the chain stored in a particular index.
*
* This implementation removes the entry from the data storage table.
* The size is not updated.
* Subclasses could override to handle changes to the map.
*
* @param entry the entry to remove
* @param hashIndex the index into the data structure
* @param previous the previous entry in the chain
*/
protected void removeEntry(HashEntry entry, int hashIndex, HashEntry previous) {
if (previous == null) {
data[hashIndex] = entry.next;
} else {
previous.next = entry.next;
}
}
/**
* Kills an entry ready for the garbage collector.
*
* This implementation prepares the HashEntry for garbage collection.
* Subclasses can override this to implement caching (override clear as well).
*
* @param entry the entry to destroy
*/
protected void destroyEntry(HashEntry entry) {
entry.next = null;
entry.key = null;
entry.value = null;
}
//-----------------------------------------------------------------------
/**
* Checks the capacity of the map and enlarges it if necessary.
*
* This implementation uses the threshold to check if the map needs enlarging
*/
protected void checkCapacity() {
if (size >= threshold) {
int newCapacity = data.length * 2;
if (newCapacity <= MAXIMUM_CAPACITY) {
ensureCapacity(newCapacity);
}
}
}
/**
* Changes the size of the data structure to the capacity proposed.
*
* @param newCapacity the new capacity of the array (a power of two, less or equal to max)
*/
protected void ensureCapacity(int newCapacity) {
int oldCapacity = data.length;
if (newCapacity <= oldCapacity) {
return;
}
if (size == 0) {
threshold = calculateThreshold(newCapacity, loadFactor);
data = new HashEntry[newCapacity];
} else {
HashEntry[] oldEntries = data;
HashEntry[] newEntries = new HashEntry[newCapacity];
modCount++;
for (int i = oldCapacity - 1; i >= 0; i--) {
HashEntry entry = oldEntries[i];
if (entry != null) {
oldEntries[i] = null; // gc
do {
HashEntry next = entry.next;
int index = hashIndex(entry.hashCode, newCapacity);
entry.next = newEntries[index];
newEntries[index] = entry;
entry = next;
} while (entry != null);
}
}
threshold = calculateThreshold(newCapacity, loadFactor);
data = newEntries;
}
}
/**
* Calculates the new capacity of the map.
* This implementation normalizes the capacity to a power of two.
*
* @param proposedCapacity the proposed capacity
* @return the normalized new capacity
*/
protected int calculateNewCapacity(int proposedCapacity) {
int newCapacity = 1;
if (proposedCapacity > MAXIMUM_CAPACITY) {
newCapacity = MAXIMUM_CAPACITY;
} else {
while (newCapacity < proposedCapacity) {
newCapacity <<= 1; // multiply by two
}
if (newCapacity > MAXIMUM_CAPACITY) {
newCapacity = MAXIMUM_CAPACITY;
}
}
return newCapacity;
}
/**
* Calculates the new threshold of the map, where it will be resized.
* This implementation uses the load factor.
*
* @param newCapacity the new capacity
* @param factor the load factor
* @return the new resize threshold
*/
protected int calculateThreshold(int newCapacity, float factor) {
return (int) (newCapacity * factor);
}
//-----------------------------------------------------------------------
/**
* Gets the next
field from a HashEntry
.
* Used in subclasses that have no visibility of the field.
*
* @param entry the entry to query, must not be null
* @return the next
field of the entry
* @throws NullPointerException if the entry is null
* @since Commons Collections 3.1
*/
protected HashEntry entryNext(HashEntry entry) {
return entry.next;
}
/**
* Gets the hashCode
field from a HashEntry
.
* Used in subclasses that have no visibility of the field.
*
* @param entry the entry to query, must not be null
* @return the hashCode
field of the entry
* @throws NullPointerException if the entry is null
* @since Commons Collections 3.1
*/
protected int entryHashCode(HashEntry entry) {
return entry.hashCode;
}
/**
* Gets the key
field from a HashEntry
.
* Used in subclasses that have no visibility of the field.
*
* @param entry the entry to query, must not be null
* @return the key
field of the entry
* @throws NullPointerException if the entry is null
* @since Commons Collections 3.1
*/
protected Object entryKey(HashEntry entry) {
return entry.key;
}
/**
* Gets the value
field from a HashEntry
.
* Used in subclasses that have no visibility of the field.
*
* @param entry the entry to query, must not be null
* @return the value
field of the entry
* @throws NullPointerException if the entry is null
* @since Commons Collections 3.1
*/
protected Object entryValue(HashEntry entry) {
return entry.value;
}
//-----------------------------------------------------------------------
/**
* Gets an iterator over the map.
* Changes made to the iterator affect this map.
*
* A MapIterator returns the keys in the map. It also provides convenient
* methods to get the key and value, and set the value.
* It avoids the need to create an entrySet/keySet/values object.
* It also avoids creating the Map.Entry object.
*
* @return the map iterator
*/
public MapIterator mapIterator() {
if (size == 0) {
return EmptyMapIterator.INSTANCE;
}
return new HashMapIterator(this);
}
/**
* MapIterator implementation.
*/
protected static class HashMapIterator extends HashIterator implements MapIterator {
/**
* Ctor.
*
* @param parent the parent
*/
protected HashMapIterator(AbstractHashedMap parent) {
super(parent);
}
public Object next() {
return super.nextEntry().getKey();
}
public Object getKey() {
HashEntry current = currentEntry();
if (current == null) {
throw new IllegalStateException(AbstractHashedMap.GETKEY_INVALID);
}
return current.getKey();
}
public Object getValue() {
HashEntry current = currentEntry();
if (current == null) {
throw new IllegalStateException(AbstractHashedMap.GETVALUE_INVALID);
}
return current.getValue();
}
public Object setValue(Object value) {
HashEntry current = currentEntry();
if (current == null) {
throw new IllegalStateException(AbstractHashedMap.SETVALUE_INVALID);
}
return current.setValue(value);
}
}
//-----------------------------------------------------------------------
/**
* Gets the entrySet view of the map.
* Changes made to the view affect this map.
* To simply iterate through the entries, use {@link #mapIterator()}.
*
* @return the entrySet view
*/
public Set entrySet() {
if (entrySet == null) {
entrySet = new EntrySet(this);
}
return entrySet;
}
/**
* Creates an entry set iterator.
* Subclasses can override this to return iterators with different properties.
*
* @return the entrySet iterator
*/
protected Iterator createEntrySetIterator() {
if (size() == 0) {
return EmptyIterator.INSTANCE;
}
return new EntrySetIterator(this);
}
/**
* EntrySet implementation.
*/
protected static class EntrySet extends AbstractSet {
/**
* The parent map
*/
protected final AbstractHashedMap parent;
/**
* Ctor.
*
* @param parent the parent
*/
protected EntrySet(AbstractHashedMap parent) {
super();
this.parent = parent;
}
public int size() {
return parent.size();
}
public void clear() {
parent.clear();
}
public boolean contains(Object entry) {
if (entry instanceof Map.Entry) {
Map.Entry e = (Map.Entry) entry;
Entry match = parent.getEntry(e.getKey());
return match != null && match.equals(e);
}
return false;
}
public boolean remove(Object obj) {
if (!(obj instanceof Map.Entry)) {
return false;
}
if (!contains(obj)) {
return false;
}
Map.Entry entry = (Map.Entry) obj;
Object key = entry.getKey();
parent.remove(key);
return true;
}
public Iterator iterator() {
return parent.createEntrySetIterator();
}
}
/**
* EntrySet iterator.
*/
protected static class EntrySetIterator extends HashIterator {
/**
* Ctor.
*
* @param parent the parent
*/
protected EntrySetIterator(AbstractHashedMap parent) {
super(parent);
}
public Object next() {
return super.nextEntry();
}
}
//-----------------------------------------------------------------------
/**
* Gets the keySet view of the map.
* Changes made to the view affect this map.
* To simply iterate through the keys, use {@link #mapIterator()}.
*
* @return the keySet view
*/
public Set keySet() {
if (keySet == null) {
keySet = new KeySet(this);
}
return keySet;
}
/**
* Creates a key set iterator.
* Subclasses can override this to return iterators with different properties.
*
* @return the keySet iterator
*/
protected Iterator createKeySetIterator() {
if (size() == 0) {
return EmptyIterator.INSTANCE;
}
return new KeySetIterator(this);
}
/**
* KeySet implementation.
*/
protected static class KeySet extends AbstractSet {
/**
* The parent map
*/
protected final AbstractHashedMap parent;
/**
* Ctor.
*
* @param parent the parent
*/
protected KeySet(AbstractHashedMap parent) {
super();
this.parent = parent;
}
public int size() {
return parent.size();
}
public void clear() {
parent.clear();
}
public boolean contains(Object key) {
return parent.containsKey(key);
}
public boolean remove(Object key) {
boolean result = parent.containsKey(key);
parent.remove(key);
return result;
}
public Iterator iterator() {
return parent.createKeySetIterator();
}
}
/**
* KeySet iterator.
*/
protected static class KeySetIterator extends EntrySetIterator {
/**
* Ctor.
*
* @param parent the parent
*/
protected KeySetIterator(AbstractHashedMap parent) {
super(parent);
}
public Object next() {
return super.nextEntry().getKey();
}
}
//-----------------------------------------------------------------------
/**
* Gets the values view of the map.
* Changes made to the view affect this map.
* To simply iterate through the values, use {@link #mapIterator()}.
*
* @return the values view
*/
public Collection values() {
if (values == null) {
values = new Values(this);
}
return values;
}
/**
* Creates a values iterator.
* Subclasses can override this to return iterators with different properties.
*
* @return the values iterator
*/
protected Iterator createValuesIterator() {
if (size() == 0) {
return EmptyIterator.INSTANCE;
}
return new ValuesIterator(this);
}
/**
* Values implementation.
*/
protected static class Values extends AbstractCollection {
/**
* The parent map
*/
protected final AbstractHashedMap parent;
/**
* Ctor.
*
* @param parent the parent
*/
protected Values(AbstractHashedMap parent) {
super();
this.parent = parent;
}
public int size() {
return parent.size();
}
public void clear() {
parent.clear();
}
public boolean contains(Object value) {
return parent.containsValue(value);
}
public Iterator iterator() {
return parent.createValuesIterator();
}
}
/**
* Values iterator.
*/
protected static class ValuesIterator extends HashIterator {
/**
* Ctor.
*
* @param parent the parent
*/
protected ValuesIterator(AbstractHashedMap parent) {
super(parent);
}
public Object next() {
return super.nextEntry().getValue();
}
}
//-----------------------------------------------------------------------
/**
* HashEntry used to store the data.
*
* If you subclass AbstractHashedMap
but not HashEntry
* then you will not be able to access the protected fields.
* The entryXxx()
methods on AbstractHashedMap
exist
* to provide the necessary access.
*/
protected static class HashEntry implements Map.Entry, KeyValue {
/**
* The next entry in the hash chain
*/
protected HashEntry next;
/**
* The hash code of the key
*/
protected int hashCode;
/**
* The key
*/
protected Object key;
/**
* The value
*/
protected Object value;
/**
* Ctor.
*
* @param next the next
* @param hashCode the hash code
* @param key the key
* @param value the value
*/
protected HashEntry(HashEntry next, int hashCode, Object key, Object value) {
super();
this.next = next;
this.hashCode = hashCode;
this.key = key;
this.value = value;
}
public Object getKey() {
return key == NULL ? null : key;
}
public Object getValue() {
return value;
}
public Object setValue(Object value) {
Object old = this.value;
this.value = value;
return old;
}
public boolean equals(Object obj) {
if (obj == this) {
return true;
}
if (!(obj instanceof Map.Entry)) {
return false;
}
Map.Entry other = (Map.Entry) obj;
return
(getKey() == null ? other.getKey() == null : getKey().equals(other.getKey())) &&
(getValue() == null ? other.getValue() == null : getValue().equals(other.getValue()));
}
public int hashCode() {
return (getKey() == null ? 0 : getKey().hashCode()) ^
(getValue() == null ? 0 : getValue().hashCode());
}
public String toString() {
return new StringBuffer().append(getKey()).append('=').append(getValue()).toString();
}
}
/**
* Base Iterator
*/
protected static abstract class HashIterator implements Iterator {
/**
* The parent map
*/
protected final AbstractHashedMap parent;
/**
* The current index into the array of buckets
*/
protected int hashIndex;
/**
* The last returned entry
*/
protected HashEntry last;
/**
* The next entry
*/
protected HashEntry next;
/**
* The modification count expected
*/
protected int expectedModCount;
/**
* Ctor.
*
* @param parent parent map
*/
protected HashIterator(AbstractHashedMap parent) {
super();
this.parent = parent;
HashEntry[] data = parent.data;
int i = data.length;
HashEntry next = null;
while (i > 0 && next == null) {
next = data[--i];
}
this.next = next;
this.hashIndex = i;
this.expectedModCount = parent.modCount;
}
public boolean hasNext() {
return next != null;
}
/**
* Next entry.
*
* @return next entry.
*/
protected HashEntry nextEntry() {
if (parent.modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
HashEntry newCurrent = next;
if (newCurrent == null) {
throw new NoSuchElementException(AbstractHashedMap.NO_NEXT_ENTRY);
}
HashEntry[] data = parent.data;
int i = hashIndex;
HashEntry n = newCurrent.next;
while (n == null && i > 0) {
n = data[--i];
}
next = n;
hashIndex = i;
last = newCurrent;
return newCurrent;
}
/**
* Current entry.
*
* @return current entry
*/
protected HashEntry currentEntry() {
return last;
}
public void remove() {
if (last == null) {
throw new IllegalStateException(AbstractHashedMap.REMOVE_INVALID);
}
if (parent.modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
parent.remove(last.getKey());
last = null;
expectedModCount = parent.modCount;
}
public String toString() {
if (last != null) {
return "Iterator[" + last.getKey() + "=" + last.getValue() + "]";
} else {
return "Iterator[]";
}
}
}
//-----------------------------------------------------------------------
/**
* Writes the map data to the stream. This method must be overridden if a
* subclass must be setup before put()
is used.
*
* Serialization is not one of the JDK's nicest topics. Normal serialization will
* initialise the superclass before the subclass. Sometimes however, this isn't
* what you want, as in this case the put()
method on read can be
* affected by subclass state.
*
* The solution adopted here is to serialize the state data of this class in
* this protected method. This method must be called by the
* writeObject()
of the first serializable subclass.
*
* Subclasses may override if they have a specific field that must be present
* on read before this implementation will work. Generally, the read determines
* what must be serialized here, if anything.
*
* @param outStream the output stream
* @throws IOException write error
*/
protected void doWriteObject(ObjectOutputStream outStream) throws IOException {
outStream.writeFloat(loadFactor);
outStream.writeInt(data.length);
outStream.writeInt(size);
for (MapIterator it = mapIterator(); it.hasNext(); ) {
outStream.writeObject(it.next());
outStream.writeObject(it.getValue());
}
}
/**
* Reads the map data from the stream. This method must be overridden if a
* subclass must be setup before put()
is used.
*
* Serialization is not one of the JDK's nicest topics. Normal serialization will
* initialise the superclass before the subclass. Sometimes however, this isn't
* what you want, as in this case the put()
method on read can be
* affected by subclass state.
*
* The solution adopted here is to deserialize the state data of this class in
* this protected method. This method must be called by the
* readObject()
of the first serializable subclass.
*
* Subclasses may override if the subclass has a specific field that must be present
* before put()
or calculateThreshold()
will work correctly.
*
* @param input the input stream
* @throws IOException io error
* @throws ClassNotFoundException class not found
*/
protected void doReadObject(ObjectInputStream input) throws IOException, ClassNotFoundException {
loadFactor = input.readFloat();
int capacity = input.readInt();
int size = input.readInt();
init();
threshold = calculateThreshold(capacity, loadFactor);
data = new HashEntry[capacity];
for (int i = 0; i < size; i++) {
Object key = input.readObject();
Object value = input.readObject();
put(key, value);
}
}
//-----------------------------------------------------------------------
/**
* Clones the map without cloning the keys or values.
*
* To implement clone()
, a subclass must implement the
* Cloneable
interface and make this method public.
*
* @return a shallow clone
*/
protected Object clone() throws CloneNotSupportedException {
AbstractHashedMap cloned = (AbstractHashedMap) super.clone();
cloned.data = new HashEntry[data.length];
cloned.entrySet = null;
cloned.keySet = null;
cloned.values = null;
cloned.modCount = 0;
cloned.size = 0;
cloned.init();
cloned.putAll(this);
return cloned;
}
/**
* Compares this map with another.
*
* @param obj the object to compare to
* @return true if equal
*/
public boolean equals(Object obj) {
if (obj == this) {
return true;
}
if (!(obj instanceof Map)) {
return false;
}
Map map = (Map) obj;
if (map.size() != size()) {
return false;
}
MapIterator it = mapIterator();
try {
while (it.hasNext()) {
Object key = it.next();
Object value = it.getValue();
if (value == null) {
if (map.get(key) != null || !map.containsKey(key)) {
return false;
}
} else {
if (!value.equals(map.get(key))) {
return false;
}
}
}
} catch (ClassCastException ignored) {
return false;
} catch (NullPointerException ignored) {
return false;
}
return true;
}
/**
* Gets the standard Map hashCode.
*
* @return the hash code defined in the Map interface
*/
public int hashCode() {
int total = 0;
Iterator it = createEntrySetIterator();
while (it.hasNext()) {
total += it.next().hashCode();
}
return total;
}
/**
* Gets the map as a String.
*
* @return a string version of the map
*/
public String toString() {
if (size() == 0) {
return "{}";
}
StringBuilder buf = new StringBuilder(32 * size());
buf.append('{');
MapIterator it = mapIterator();
boolean hasNext = it.hasNext();
while (hasNext) {
Object key = it.next();
Object value = it.getValue();
buf.append(key == this ? "(this Map)" : key)
.append('=')
.append(value == this ? "(this Map)" : value);
hasNext = it.hasNext();
if (hasNext) {
buf.append(',').append(' ');
}
}
buf.append('}');
return buf.toString();
}
}