Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
package com.etsy.conjecture.model;
import com.etsy.conjecture.data.LazyVector;
import com.etsy.conjecture.Utilities;
import static com.google.common.base.Preconditions.checkArgument;
import com.etsy.conjecture.data.Label;
import com.etsy.conjecture.data.LabeledInstance;
import com.etsy.conjecture.data.StringKeyedVector;
import java.util.Collection;
/**
* Builds the weight updates as a function
* of learning rate and regularization schedule for SGD learning.
*
* Default learning rate and regularization are:
* LR: Exponentially decreasing
* REG: Lazily applied L1 and L2 regularization
* Subclasses overwrite LR and REG functions as necessary
*/
public abstract class SGDOptimizer implements LazyVector.UpdateFunction {
private static final long serialVersionUID = 9153480933266800474L;
double laplace = 0.0;
double gaussian = 0.0;
double initialLearningRate = 0.01;
transient UpdateableLinearModel model;
double examplesPerEpoch = 10000;
boolean useExponentialLearningRate = false;
double exponentialLearningRateBase = 0.99;
public SGDOptimizer() {}
public SGDOptimizer(double g, double l) {
gaussian = g;
laplace = l;
}
/**
* Do minibatch gradient descent
*/
public StringKeyedVector getUpdates(Collection> minibatch) {
StringKeyedVector updateVec = new StringKeyedVector();
for (LabeledInstance instance : minibatch) {
updateVec.add(getUpdate(instance)); // accumulate gradient
model.truncate(instance);
model.epoch++;
}
updateVec.mul(1.0/minibatch.size()); // do a single update, scaling weights by the
// average gradient over the minibatch
return updateVec;
}
/**
* Get the update to the param vector using a chosen
* learning rate / regularization schedule.
* Returns a StringKeyedVector of updates for each
* parameter.
*/
public abstract StringKeyedVector getUpdate(LabeledInstance instance);
public void teardown() {
}
/**
* Implements lazy updating of regularization when the regularization
* updates aren't sparse (e.g. elastic net l1 and l2, adagrad l1).
*
* When regularization can be done on just the non-zero elements of
* the sample instance (e.g. FTRL proximal, HandsFree), the lazyUpdate
* function does nothing (i.e. just returns the unscaled param).
*/
public double lazyUpdate(String feature, double param, long start, long end) {
if (Utilities.floatingPointEquals(laplace, 0.0d)
&& Utilities.floatingPointEquals(gaussian, 0.0d)) {
return param;
}
for (long iter = start + 1; iter <= end; iter++) {
if (Utilities.floatingPointEquals(param, 0.0d)) {
return 0.0d;
}
double eta = getDecreasingLearningRate(iter);
/**
* TODO: patch so that param cannot cross 0.0 during gaussian update
*/
param -= eta * gaussian * param;
if (param > 0.0) {
param = Math.max(0.0, param - eta * laplace);
} else {
param = Math.min(0.0, param + eta * laplace);
}
}
return param;
}
/**
* Computes a linearly or exponentially decreasing
* learning rate as a function of the current epoch.
* Even when we have per feature learning rates, it's
* necessary to keep track of a decreasing learning rate
* for things like truncation.
*/
public double getDecreasingLearningRate(long t){
double epoch_fudged = Math.max(1.0, (t + 1) / examplesPerEpoch);
if (useExponentialLearningRate) {
return Math.max(
0d,
this.initialLearningRate
* Math.pow(this.exponentialLearningRateBase,
epoch_fudged));
} else {
return Math.max(0d, this.initialLearningRate / epoch_fudged);
}
}
public SGDOptimizer setInitialLearningRate(double rate) {
checkArgument(rate > 0, "Initial learning rate must be greater than 0. Given: %s", rate);
this.initialLearningRate = rate;
return this;
}
public SGDOptimizer setExamplesPerEpoch(double examples) {
checkArgument(examples > 0,
"examples per epoch must be positive, given %f", examples);
this.examplesPerEpoch = examples;
return this;
}
public SGDOptimizer setUseExponentialLearningRate(boolean useExponentialLearningRate) {
this.useExponentialLearningRate = useExponentialLearningRate;
return this;
}
public SGDOptimizer setExponentialLearningRateBase(double base) {
checkArgument(base > 0,
"exponential learning rate base must be positive, given: %f",
base);
checkArgument(
base <= 1.0,
"exponential learning rate base must be at most 1.0, given: %f",
base);
this.exponentialLearningRateBase = base;
return this;
}
public SGDOptimizer setGaussianRegularizationWeight(double gaussian) {
checkArgument(gaussian >= 0.0,
"gaussian regularization weight must be non-negative, given: %f",
gaussian);
this.gaussian = gaussian;
return this;
}
public SGDOptimizer setLaplaceRegularizationWeight(double laplace) {
checkArgument(laplace >= 0.0,
"laplace regularization weight must be non-negative, given: %f",
laplace);
this.laplace = laplace;
return this;
}
}