com.expleague.ml.clustering.impl.NearestCentroidAlgorithm Maven / Gradle / Ivy
package com.expleague.ml.clustering.impl;
import com.expleague.commons.func.Computable;
import com.expleague.commons.math.metrics.Metric;
import com.expleague.commons.math.vectors.Vec;
import com.expleague.commons.math.vectors.VecIterator;
import com.expleague.commons.math.vectors.VecTools;
import com.expleague.ml.clustering.ClusterizationAlgorithm;
import com.expleague.commons.util.CollectionTools;
import com.expleague.commons.util.Factories;
import com.expleague.commons.util.Pair;
import org.jetbrains.annotations.NotNull;
import java.util.Collection;
/**
* User: terry
* Date: 16.01.2010
*/
public class NearestCentroidAlgorithm implements ClusterizationAlgorithm {
private final Metric metric;
private final double acceptanceDistance;
public NearestCentroidAlgorithm(final Metric metric, final double acceptanceDistance) {
this.metric = metric;
this.acceptanceDistance = acceptanceDistance;
}
@NotNull
@Override
public Collection extends Collection> cluster(final Collection dataSet, final Computable data2DVector) {
final Collection,Vec>> clusters = Factories.hashSet();
for (final X data : dataSet) {
final Vec dataVector = data2DVector.compute(data);
Pair, Vec> nearestCluster = null;
double minDistance = Double.MAX_VALUE;
for (final Pair, Vec> pair : clusters) {
final double candidateDistance = metric.distance(pair.getSecond(), dataVector);
if (candidateDistance < minDistance) {
minDistance = candidateDistance ;
nearestCluster = pair;
}
}
// if (nearestCluster != null) {
// System.out.println(dataVector.toString().substring(0, 100));
// System.out.println("");
// System.out.println(nearestCluster.getSecond().toString().substring(0, 100));
// System.out.println(minDistance);
// System.out.println("");
// }
if (minDistance > acceptanceDistance) {
clusters.add(Pair.,Vec>create(Factories.hashSet(data), dataVector));
} else {
final Collection collection = nearestCluster.getFirst();
final Vec centroid = nearestCluster.getSecond();
VecTools.scale(centroid, collection.size());
VecTools.append(centroid, dataVector);
collection.add(data);
VecTools.scale(centroid, 1./collection.size());
final VecIterator it = centroid.nonZeroes();
while (it.advance()) {
if (it.value() < 0.01) {
it.setValue(0);
}
}
}
}
return CollectionTools.mapFirst(clusters);
}
}