All Downloads are FREE. Search and download functionalities are using the official Maven repository.
Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
com.expleague.ml.methods.PGMEM Maven / Gradle / Ivy
package com.expleague.ml.methods;
import com.expleague.commons.filters.Filter;
import com.expleague.commons.func.Computable;
import com.expleague.commons.func.impl.WeakListenerHolderImpl;
import com.expleague.commons.math.MathTools;
import com.expleague.commons.math.vectors.Mx;
import com.expleague.commons.math.vectors.MxIterator;
import com.expleague.commons.math.vectors.Vec;
import com.expleague.commons.math.vectors.VecTools;
import com.expleague.commons.math.vectors.impl.vectors.ArrayVec;
import com.expleague.commons.math.vectors.impl.mx.VecBasedMx;
import com.expleague.commons.random.FastRandom;
import com.expleague.commons.seq.IntSeq;
import com.expleague.commons.util.ThreadTools;
import com.expleague.commons.util.cache.CacheStrategy;
import com.expleague.commons.util.cache.impl.FixedSizeCache;
import com.expleague.ml.data.set.VecDataSet;
import com.expleague.ml.loss.LLLogit;
import com.expleague.ml.models.pgm.ProbabilisticGraphicalModel;
import com.expleague.ml.models.pgm.Route;
import com.expleague.ml.models.pgm.SimplePGM;
import java.util.WeakHashMap;
import java.util.concurrent.*;
/**
* User: solar
* Date: 27.01.14
* Time: 13:29
*/
public class PGMEM extends WeakListenerHolderImpl implements VecOptimization {
public abstract static class Policy implements Filter {
private final Vec weights;
private final Route[] routes;
private Double len;
private int index = 0;
protected Policy(final ProbabilisticGraphicalModel pgm) {
weights = new ArrayVec(pgm.knownRoutesCount());
routes = new Route[pgm.knownRoutesCount()];
}
protected void addOption(final Route r, final double w) {
weights.set(index, w);
routes[index++] = r;
}
public Route next(final FastRandom rng) {
if (len == null)
len = VecTools.l1(weights);
return index == 0 ? null : routes[rng.nextSimple(weights, len)];
}
public Policy clear() {
VecTools.scale(weights, 0.);
len = null;
index = 0;
return this;
}
}
public static final Computable MOST_PROBABLE_PATH = new Computable() {
@Override
public Policy compute(final ProbabilisticGraphicalModel argument) {
return new Policy(argument) {
@Override
public boolean accept(final Route route) {
addOption(route, 1.);
return true;
}
}.clear();
}
};
public static final Computable LAPLACE_PRIOR_PATH = new Computable() {
@Override
public Policy compute(final ProbabilisticGraphicalModel argument) {
return new Policy(argument) {
@Override
public boolean accept(final Route route) {
addOption(route, route.p() * prior(route.length()));
return false;
}
private double prior(final int length) {
return Math.exp(-length-1);
}
}.clear();
}
};
public static final Computable GAMMA_PRIOR_PATH = new Computable() {
@Override
public Policy compute(final ProbabilisticGraphicalModel argument) {
return new Policy(argument) {
@Override
public boolean accept(final Route route) {
addOption(route, route.p() * prior(route.length()));
return false;
}
private double prior(final int length) {
final double meanERouteLength = ((SimplePGM) argument).meanERouteLength;
return meanERouteLength > 1 ? length * length * Math.exp(-length/ (meanERouteLength/ 3 * 0.7)) : 1;
}
}.clear();
}
};
public static final Computable POISSON_PRIOR_PATH = new Computable() {
@Override
public Policy compute(final ProbabilisticGraphicalModel argument) {
final double meanLen = ((SimplePGM)argument).meanERouteLength;
return new Policy(argument) {
@Override
public boolean accept(final Route route) {
addOption(route, route.p() * prior(route.length()));
return false;
}
private double prior(final int length) {
return meanLen > 1 ? MathTools.poissonProbability((meanLen - 1) * 0.5, length - 1) : Math.exp(-length);
}
}.clear();
}
};
public static final Computable FREQ_DENSITY_PRIOR_PATH = new Computable() {
final WeakHashMap cache = new WeakHashMap();
@Override
public Policy compute(final ProbabilisticGraphicalModel argument) {
Vec freqs = cache.get(argument);
if (freqs == null) {
freqs = new ArrayVec(10000);
for (int i = 0; i < argument.knownRoutesCount(); i++) {
final Route r = argument.knownRoute(i);
if (r.length() < freqs.dim())
freqs.adjust(r.length(), r.p());
}
synchronized (cache) {
cache.put(argument, freqs);
}
}
final double unknownWeight = 1 - VecTools.norm1(freqs);
final int knownRootsCount = argument.knownRoutesCount();
final Vec finalFreqs = freqs;
return new Policy(argument) {
@Override
public boolean accept(final Route route) {
final double prior = finalFreqs.get(route.length());
addOption(route, route.p() * (prior > 0 ? prior : 2 * unknownWeight / knownRootsCount));
return false;
}
}.clear();
}
};
private final Computable policyFactory;
private final Mx topology;
private final int iterations;
private final double step;
private final FastRandom rng;
public PGMEM(final Mx topology, final double smoothing, final int iterations) {
this(topology, smoothing, iterations, new FastRandom(), MOST_PROBABLE_PATH);
}
public PGMEM(final Mx topology, final double smoothing, final int iterations, final FastRandom rng, final Computable policy) {
this.policyFactory = policy;
this.topology = topology;
this.iterations = iterations;
this.step = smoothing;
this.rng = rng;
}
@Override
public SimplePGM fit(final VecDataSet learn, final LLLogit ll) {
final ThreadPoolExecutor executor = ThreadTools.createBGExecutor(PGMEM.class.getName(), learn.length());
SimplePGM currentPGM = new SimplePGM(topology);
final FixedSizeCache cache = new FixedSizeCache<>(10000, CacheStrategy.Type.LRU);
final int[][] cpds = new int[learn.length()][];
final Mx data = learn.data();
for (int j = 0; j < data.rows(); j++) {
cpds[j] = currentPGM.extractControlPoints(data.row(j));
}
for (int t = 0; t < iterations; t++) {
cache.clear();
final Route[] eroutes = new Route[learn.length()];
final SimplePGM finalCurrentPGM = currentPGM;
{ // E-step
final CountDownLatch latch = new CountDownLatch(cpds.length);
for (int j = 0; j < cpds.length; j++) {
final int finalJ = j;
executor.execute(new Runnable() {
@Override
public void run() {
final Policy policy;
synchronized (cache) {
policy = cache.get(new IntSeq(cpds[finalJ]), new Computable() {
@Override
public Policy compute(final IntSeq argument) {
final Policy policy = policyFactory.compute(finalCurrentPGM);
finalCurrentPGM.visit(policy, cpds[finalJ]);
return policy;
}
});
}
eroutes[finalJ] = policy.next(rng);
latch.countDown();
}
});
}
try {
latch.await();
} catch (InterruptedException e) {
// skip
}
}
final Mx next = new VecBasedMx(topology.columns(), new ArrayVec(topology.dim()));
{ // adjusting parameters of Dir(next[i]) by one only if this way is possible
final MxIterator it = topology.nonZeroes();
while (it.advance()) {
if (it.value() > MathTools.EPSILON)
next.adjust(it.index(), 1.);
}
}
double meanLen = 0;
{ // M-step
for (final Route eroute : eroutes) {
if (eroute == null)
continue;
meanLen += eroute.length();
int prev = eroute.dst(0);
for (int i = 1; i < eroute.length(); i++) {
next.adjust(prev, prev = eroute.dst(i), 1.);
}
}
meanLen /= eroutes.length;
for (int i = 0; i < next.rows(); i++) {
VecTools.normalizeL1(next.row(i)); // assuming weights of nodes are distributed by Dir(next[i]), then optimal parameters will be proportional to pass count
}
}
{ // Update PGM
VecTools.scale(next, step/(1. - step));
VecTools.append(next, currentPGM.topology);
VecTools.scale(next, (1. - step));
currentPGM = new SimplePGM(next, meanLen);
System.out.println(meanLen);
invoke(currentPGM);
}
}
executor.shutdown();
return currentPGM;
}
}