Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
package com.expleague.ml.methods.greedyRegion;
import com.expleague.commons.func.AdditiveStatistics;
import com.expleague.commons.util.ArrayTools;
import com.expleague.ml.BFGrid;
import com.expleague.ml.data.Aggregate;
import com.expleague.ml.data.impl.BinarizedDataSet;
import com.expleague.ml.loss.StatBasedLoss;
import com.expleague.ml.methods.trees.BFOptimizationSubset;
import gnu.trove.list.array.TIntArrayList;
/**
* User: solar
* Date: 10.09.13
* Time: 12:16
*/
@SuppressWarnings("unchecked")
public class BFWeakConditionsOptimizationRegion {
protected final BinarizedDataSet bds;
protected int[] points;
protected int[] failedCount;
protected final StatBasedLoss oracle;
protected final Aggregate aggregate;
protected final int maxFailed;
public AdditiveStatistics nonCriticalTotal;
public final AdditiveStatistics excluded;
protected final int[] failedBorders;
public BFWeakConditionsOptimizationRegion(final BinarizedDataSet bds, final StatBasedLoss oracle, final int[] points, final BFGrid.BinaryFeature[] features, final boolean[] masks, final int maxFailed) {
this.bds = bds;
this.excluded = (AdditiveStatistics) oracle.statsFactory().create();
this.points = points;
this.failedCount = new int[points.length];
final byte[][] bins = new byte[features.length][];
for (int f = 0; f < features.length; ++f)
bins[f] = bds.bins(features[f].findex);
this.nonCriticalTotal = (AdditiveStatistics) oracle.statsFactory().create();
final TIntArrayList maxFailedPoints = new TIntArrayList();
for (int i = 0; i < points.length; ++i) {
final int index = points[i];
int failed = 0;
for (int f = 0; f < features.length; ++f) {
if (bins[f][index] > features[f].binNo != masks[f]) {
++failed;
}
}
failedCount[i] = failed;
if (failed < maxFailed) {
this.nonCriticalTotal.append(index, 1);
} else if (failed == maxFailed) {
maxFailedPoints.add(index);
} else {
excluded.append(index, 1);
}
}
this.oracle = oracle;
this.maxFailed = maxFailed;
this.aggregate = new Aggregate(bds, oracle.statsFactory(), maxFailedPoints.toArray());
this.failedBorders = new int[maxFailed + 1];
ArrayTools.parallelSort(failedCount, points);
failedBorders[maxFailed] = points.length;
updateFailedBorders(failedCount, failedBorders);
}
protected void updateFailedBorders(final int[] failedCount, final int[] failedBorders) {
final int rightLimit = failedBorders[maxFailed];
failedBorders[maxFailed] = upperBound(failedCount, maxFailed, 0, rightLimit);
for (int i = maxFailed - 1; i >= 0; --i) {
failedBorders[i] = upperBound(failedCount, i, 0, failedBorders[i + 1]);
}
}
//java version doesn't guarantee, that we'll find last or first entry
private int upperBound(final int[] arr, final int key, final int fromIndex, final int toIndex) {
int left = fromIndex;
int right = toIndex;
while (right - left > 1) {
final int mid = (left + right) >>> 1;
final int midVal = arr[mid];
if (midVal <= key)
left = mid;
else
right = mid;
}
if (right > 0 && arr[right - 1] < key) {
return right - 1;
} else
return right;
}
public BFOptimizationSubset split(final BFGrid.BinaryFeature feature, final boolean mask) {
final TIntArrayList out = new TIntArrayList(points.length);
final byte[] bins = bds.bins(feature.findex);
final TIntArrayList newCriticalPoints = new TIntArrayList();
final AdditiveStatistics newCritical = oracle.statsFactory().create();
final AdditiveStatistics test = oracle.statsFactory().create();
for (int i = 0; i < failedBorders[maxFailed]; ++i) {
final int index = points[i];
if ((bins[index] > feature.binNo) != mask) {
failedCount[i]++;
if (failedCount[i] == maxFailed) {
newCriticalPoints.add(index);
newCritical.append(index, 1);
} else if (failedCount[i] == (maxFailed + 1)) {
out.add(index);
excluded.append(index, 1);
test.append(index, 1);
}
}
}
final BFOptimizationSubset outRegion = new BFOptimizationSubset(bds, oracle, out.toArray());
aggregate.remove(outRegion.aggregate);
aggregate.append(newCriticalPoints.toArray());
nonCriticalTotal.remove(newCritical);
ArrayTools.parallelSort(failedCount, points, 0, failedBorders[maxFailed] - 1);
updateFailedBorders(failedCount, failedBorders);
return outRegion;
}
public int size() {
return failedBorders[maxFailed];
}
public void visitAllSplits(final Aggregate.SplitVisitor extends AdditiveStatistics> visitor) {
aggregate.visit(visitor);
}
public void visitSplit(final BFGrid.BinaryFeature bf, final Aggregate.SplitVisitor visitor) {
final T left = (T) aggregate.combinatorForFeature(bf.bfIndex);
final T right = (T) oracle.statsFactory().create().append(aggregate.total()).remove(left);
visitor.accept(bf, left, right);
}
public AdditiveStatistics total() {
return aggregate.total().append(nonCriticalTotal);
}
}