All Downloads are FREE. Search and download functionalities are using the official Maven repository.
Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
com.expleague.ml.methods.trees.LassoGreedyObliviousTree Maven / Gradle / Ivy
package com.expleague.ml.methods.trees;
import com.expleague.commons.math.vectors.Mx;
import com.expleague.commons.math.vectors.SingleValueVec;
import com.expleague.commons.math.vectors.Vec;
import com.expleague.commons.math.vectors.VecTools;
import com.expleague.commons.math.vectors.impl.vectors.ArrayVec;
import com.expleague.ml.data.impl.BinarizedDataSet;
import com.expleague.ml.data.set.VecDataSet;
import com.expleague.ml.func.Linear;
import com.expleague.ml.loss.StatBasedLoss;
import com.expleague.ml.loss.WeightedLoss;
import com.expleague.ml.methods.ElasticNetMethod;
import com.expleague.commons.math.vectors.impl.mx.VecBasedMx;
import com.expleague.commons.util.ArrayTools;
import com.expleague.commons.util.Pair;
import com.expleague.ml.Binarize;
import com.expleague.ml.func.Ensemble;
import com.expleague.ml.methods.VecOptimization;
import com.expleague.ml.models.ModelTools;
import com.expleague.ml.models.ObliviousTree;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.Collectors;
/**
* User: noxoomo
* Date: 02.12.2015
*/
public class LassoGreedyObliviousTree extends VecOptimization.Stub {
private final GreedyObliviousTree base;
final int nlambda;
final double alpha;
public LassoGreedyObliviousTree(GreedyObliviousTree base, int nlambda, double alpha) {
this.base = base;
this.nlambda = nlambda;
this.alpha = alpha;
}
private int[] learnPoints(Loss loss, VecDataSet ds) {
if (loss instanceof WeightedLoss) {
return ((WeightedLoss) loss).points();
} else return ArrayTools.sequence(0, ds.length());
}
private int[] validationPoints(Loss loss) {
if (loss instanceof WeightedLoss) {
return ((WeightedLoss) loss).zeroPoints();
} else {
throw new RuntimeException("Wrong target type. No validation points");
}
}
//TODO: noxoomo, remove duplicates
//TODO: noxoomo, no intercept regularization…
@SuppressWarnings("Duplicates")
private Pair filter(final List entryList, final BinarizedDataSet bds, Vec sourceTarget, int[] points) {
final byte[] binary = new byte[base.grid.rows()];
Mx otData = new VecBasedMx(points.length, entryList.size());
Vec target = new ArrayVec(points.length);
for (int i = 0; i < points.length; ++i) {
final int ind = points[i];
for (int f = 0; f < base.grid.rows(); ++f) {
binary[f] = bds.bins(f)[ind];
}
for (int j = 0; j < otData.columns(); ++j) {
final int[] bfIndices = entryList.get(j).getBfIndices();
double increment = 1.0;
for (int k = 0; k < bfIndices.length; k++) {
if (!base.grid.bf(bfIndices[k]).value(binary)) {
increment = 0;
break;
}
}
otData.set(i, j, increment);
target.set(i, sourceTarget.get(ind));
}
}
return new Pair<>(otData, target);
}
@Override
public ModelTools.CompiledOTEnsemble fit(final VecDataSet ds, final Loss loss) {
ObliviousTree tree = base.fit(ds, loss);
Ensemble ensemble = new Ensemble<>(new ObliviousTree[]{tree}, VecTools.fill(new SingleValueVec(1), 1.0));
ModelTools.CompiledOTEnsemble compiledOTEnsemble = ModelTools.compile(ensemble);
List entryList = compiledOTEnsemble.getEntries().stream()
.filter(entry -> entry.getBfIndices().length > 0 && entry.getValue() != 0).collect(Collectors.toList());
Vec target = VecTools.copy(loss.target());
double bias = 0;
for (int i = 0; i < target.dim(); ++i) {
bias += target.get(i);
}
bias /= target.dim();
for (int i = 0; i < target.dim(); ++i) {
target.adjust(i, -bias);
}
final BinarizedDataSet bds = ds.cache().cache(Binarize.class, VecDataSet.class).binarize(base.grid);
Pair compiledLearn = filter(entryList, bds, target, learnPoints(loss, ds));
Vec entryBias = colMean(compiledLearn.first);
center(compiledLearn.first, entryBias);
Pair compiledValidate = filter(entryList, bds, target, validationPoints(loss));
center(compiledValidate.first, entryBias);
ElasticNetMethod lasso = new ElasticNetMethod(1e-4, alpha, 1.0);
List weightsPath = lasso.fit(compiledLearn.first, compiledLearn.second, nlambda);
double[] scores = weightsPath.parallelStream().mapToDouble(linear -> {
final double testL2 = VecTools.distanceL2(linear.transAll(compiledValidate.first), compiledValidate.second) / compiledValidate.first.rows();
final double learnL2 = VecTools.distanceL2(linear.transAll(compiledLearn.first), compiledLearn.second) / compiledLearn.first.rows();
return 0.63 * testL2 + (1-0.63) * learnL2;
}).toArray();
int best = 0;
double bestScore = scores[0];
for (int i = 0; i < scores.length; ++i) {
if (scores[i] < bestScore) {
bestScore = scores[i];
best = i;
}
}
Vec weights = weightsPath.get(best).weights;
ArrayList newEntries = new ArrayList<>();
for (int i = 0; i < weights.dim(); ++i) {
if (weights.get(i) != 0) {
newEntries.add(new ModelTools.CompiledOTEnsemble.Entry(entryList.get(i).getBfIndices(), weights.get(i)));
bias -= weights.get(i) * entryBias.get(i);
}
}
if (bias != 0) {
newEntries.add(new ModelTools.CompiledOTEnsemble.Entry(new int[0], bias));
}
System.out.println("Next entries batch: " + newEntries.size() + " of " + (entryList.size() + 1) + " nonZero");
return new ModelTools.CompiledOTEnsemble(newEntries, tree.grid());
}
private Vec colMean(Mx data) {
Vec result = new ArrayVec(data.columns());
for (int i = 0; i < data.rows(); ++i) {
for (int j = 0; j < data.columns(); ++j) {
result.adjust(j, data.get(i, j));
}
}
return VecTools.scale(result, 1.0 / data.rows());
}
private void center(Mx data, Vec bias) {
for (int j = 0; j < data.rows(); ++j) {
for (int i = 0; i < data.columns(); ++i) {
data.adjust(i, j, -bias.get(i));
}
}
}
}