All Downloads are FREE. Search and download functionalities are using the official Maven repository.
Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
com.expleague.ml.models.nn.nfa.NFANetwork Maven / Gradle / Ivy
package com.expleague.ml.models.nn.nfa;
import com.expleague.commons.math.FuncC1;
import com.expleague.commons.math.vectors.Mx;
import com.expleague.commons.math.vectors.Vec;
import com.expleague.commons.math.vectors.VecTools;
import com.expleague.commons.random.FastRandom;
import com.expleague.commons.seq.CharSeqTools;
import com.expleague.commons.seq.Seq;
import com.expleague.commons.seq.SeqTools;
import com.expleague.ml.func.generic.Const;
import com.expleague.ml.func.generic.SubVecFuncC1;
import com.expleague.ml.func.generic.WSum;
import com.expleague.ml.models.nn.NeuralSpider;
import com.expleague.commons.math.vectors.impl.mx.VecBasedMx;
import com.expleague.commons.util.ArrayTools;
/**
* User: solar
* Date: 25.05.15
* Time: 13:25
*/
public class NFANetwork extends NeuralSpider> {
public static final int OUTPUT_NODES = 2;
private final FastRandom rng;
private final double dropout;
final int statesCount;
private final Seq alpha;
private final int dim;
private final int transitionMxDim;
public NFANetwork(FastRandom rng, double dropout, int statesCount, Seq alpha) {
super();
this.rng = rng;
this.dropout = dropout;
this.statesCount = statesCount;
this.alpha = alpha;
transitionMxDim = (statesCount - 1) * (statesCount - 1);
dim = transitionMxDim * alpha.length();
}
final ThreadLocal calculators = new ThreadLocal() {
@Override
protected WeightsCalculator[] initialValue() {
final WeightsCalculator[] calculators = new WeightsCalculator[alpha.length()];
for(int i = 0; i < calculators.length; i++) {
calculators[i] = new WeightsCalculator(statesCount, i * transitionMxDim, transitionMxDim);
}
return calculators;
}
};
@Override
protected Topology topology(Seq seq, final boolean dropout) {
final Node[] nodes = new Node[(seq.length() + 1) * statesCount + OUTPUT_NODES];
for (int i = 0; i < statesCount; i++) {
final Const aConst = new Const(i == 0 ? 1 : 0);
nodes[i] = new InputNode(aConst);
}
final boolean[] dropoutArr = new boolean[statesCount];
if (dropout && rng.nextDouble() < this.dropout)
dropoutArr[rng.nextInt(statesCount - OUTPUT_NODES) + 1] = true;
final int[] outputNodesConnections = new int[seq.length()];
for (int d = 0; d < seq.length(); d++) {
final int elementIndex = ArrayTools.indexOf(seq.at(d), alpha);
final int prevLayerStart = d * statesCount;
final WeightsCalculator calcer = calculators.get()[elementIndex];
calcer.setDropOut(dropoutArr);
for (int i = 0; i < statesCount; i++) {
final int nodeIndex = (d + 1) * statesCount + i;
nodes[nodeIndex] = new MyNode(i, elementIndex * transitionMxDim, transitionMxDim, prevLayerStart, statesCount, nodes.length + statesCount, calcer);
}
outputNodesConnections[d] = (d + 2) * statesCount - 1;
}
final int lastLayerStart = seq.length() * statesCount;
nodes[nodes.length - 2] = new NonDeterminedNode(this, lastLayerStart, nodes);
nodes[nodes.length - 1] = new OutputNode(outputNodesConnections, nodes);
return new NFATopology<>(this, seq, dropout, nodes, dropoutArr);
}
@Override
public int dim() {
return dim;
}
public String ppSolution(Vec x) {
final StringBuilder builder = new StringBuilder();
for (int i = 0; i < alpha.length(); i++) {
builder.append(alpha.at(i)).append(":").append("\n");
builder.append(new VecBasedMx(statesCount - 1, x.sub(i * transitionMxDim, transitionMxDim))).append("\n");
}
return builder.toString();
}
public String ppState(Vec state, Seq seq) {
final StringBuilder builder = new StringBuilder();
for (int i = 0; i <= seq.length(); i++) {
if (i > 0)
builder.append(seq.at(i - 1));
else
builder.append(" ");
for (int s = 0; s < statesCount; s++) {
builder.append("\t").append(CharSeqTools.prettyPrint.format(state.get(i * statesCount + s)));
}
builder.append('\n');
}
builder.append(" ");
for (int i = (seq.length() + 1) * statesCount; i < state.length(); i++) {
builder.append("\t").append(CharSeqTools.prettyPrint.format(state.get(i)));
}
builder.append('\n');
return builder.toString();
}
public String ppSolution(Vec x, T s) {
final int i = SeqTools.indexOf(alpha, s);
return String.valueOf(s) + ":\n" + new VecBasedMx(statesCount - 1, x.sub(i * transitionMxDim, transitionMxDim));
}
private static class MyNode implements NeuralSpider.Node {
private final int index;
private final int wStart;
private final int wLen;
private final int pStart;
private final int pLen;
private final int nodesCount;
private final WeightsCalculator calcer;
private MyNode(int index, int wStart, int wLen, int pStart, int pLen, int nodesCount, WeightsCalculator calcer) {
this.index = index;
this.wStart = wStart;
this.wLen = wLen;
this.pStart = pStart;
this.pLen = pLen;
this.nodesCount = nodesCount;
this.calcer = calcer;
}
public FuncC1 transByParents(final Vec parents) {
return new FuncC1.Stub() {
@Override
public Vec gradientTo(Vec betta, Vec to) {
final Mx weights = calcer.compute(betta);
final int bettaDim = pLen - 1;
final int indexLocal = index;
final int pStartLocal = pStart;
final VecBasedMx grad = new VecBasedMx(bettaDim, to.sub(wStart, wLen));
for (int i = 0; i < bettaDim; i++) {
final double selectedProbab = weights.get(indexLocal, i);
for (int j = 0; j < bettaDim; j++) {
double currentProbab = weights.get(j, i);
if (j == indexLocal)
grad.set(i, j, parents.get(pStartLocal + i) * selectedProbab * (1 - selectedProbab));
else
grad.set(i, j, -parents.get(pStartLocal + i) * selectedProbab * currentProbab);
}
}
return to;
}
@Override
public double value(Vec betta) {
final Mx weights = calcer.compute(betta);
return VecTools.multiply(weights.row(index), betta.sub(pStart, pLen - 1));
}
@Override
public int dim() {
return parents.dim();
}
};
}
public FuncC1 transByParameters(Vec betta) {
final Mx weights = calcer.compute(betta);
return new SubVecFuncC1(new WSum(weights.row(index)), pStart, pLen, nodesCount);
}
}
}