All Downloads are FREE. Search and download functionalities are using the official Maven repository.
Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
com.expleague.ml.methods.greedyRegion.GreedyTDIterativeRegion Maven / Gradle / Ivy
package com.expleague.ml.methods.greedyRegion;
import com.expleague.commons.func.AdditiveStatistics;
import com.expleague.commons.random.FastRandom;
import com.expleague.ml.data.Aggregate;
import com.expleague.ml.data.impl.BinarizedDataSet;
import com.expleague.ml.data.set.VecDataSet;
import com.expleague.ml.loss.StatBasedLoss;
import com.expleague.ml.methods.trees.BFOptimizationSubset;
import com.expleague.ml.models.Region;
import com.expleague.commons.util.ArrayTools;
import com.expleague.ml.BFGrid;
import com.expleague.ml.Binarize;
import java.util.ArrayList;
import java.util.List;
/**
* User: solar
* Date: 15.11.12
* Time: 15:19
*/
public class GreedyTDIterativeRegion extends RegionBasedOptimization {
protected final BFGrid grid;
private final FastRandom rand = new FastRandom();
private final double alpha;
private final double beta;
public GreedyTDIterativeRegion(final BFGrid grid) {
this(grid, 0.7, 0.5);
}
public GreedyTDIterativeRegion(final BFGrid grid, final double alpha, final double beta) {
this.grid = grid;
this.alpha = alpha;
this.beta = beta;
}
@Override
public Region fit(final VecDataSet learn, final Loss loss) {
Region current = new Region(new ArrayList(), null, 0, 0, 0, Double.POSITIVE_INFINITY, -1);
while (true) {
Region next = fitWeak(learn, loss, current, current.maxFailed + 1);
if (next.score + 1e-9f >= current.score)
return current;
current = next;
}
}
public Region fitWeak(final VecDataSet learn, final Loss loss, final Region init, final int maxFailed) {
final List conditions = new ArrayList<>(100);
final boolean[] usedBF = new boolean[grid.size()];
final List mask = new ArrayList<>();
for (int i = 0; i < init.features.length; ++i) {
conditions.add(init.features[i]);
usedBF[init.features[i].bfIndex] = true;
mask.add(init.mask[i]);
}
final BinarizedDataSet bds = learn.cache().cache(Binarize.class, VecDataSet.class).binarize(grid);
final BFWeakConditionsOptimizationRegion current =
new BFWeakConditionsOptimizationRegion(bds, loss, ArrayTools.sequence(0, learn.length()), init.features, init.mask, maxFailed);
// final BFWeakConditionsStochasticOptimizationRegion current =
// new BFWeakConditionsStochasticOptimizationRegion(bds, loss, ArrayTools.sequence(0, learn.length()), init.first, init.second, maxFailed);
// current.alpha = alpha;
// current.beta = beta;
AdditiveStatistics currentInside = (AdditiveStatistics) loss.statsFactory().create();
AdditiveStatistics currentCritical = (AdditiveStatistics) loss.statsFactory().create();
AdditiveStatistics currentOutside = (AdditiveStatistics) loss.statsFactory().create();
currentInside.append(current.total());
currentOutside.append(current.excluded);
currentCritical.append(currentInside);
currentCritical.remove(current.nonCriticalTotal);
final boolean[] isRight = new boolean[grid.size()];
final double[] scores = new double[grid.size()];
// double reg = (1 + 2*(Math.log(weight(currentInside) + 1) + Math.log(weight(currentOutside) + 1)));
// reg /= (2 + 2*(maxFailed + conditions.size()));
// double currentScore = loss.score(currentInside) * reg;
double currentScore = loss.score(currentInside) * (1 + Math.log(AdditiveStatisticsExtractors.weight(currentInside) + 1) + (conditions.size() + maxFailed) * Math.log(alpha));
while (true) {
current.visitAllSplits(new Aggregate.SplitVisitor() {
@Override
public void accept(final BFGrid.BinaryFeature bf, final AdditiveStatistics left, final AdditiveStatistics right) {
if (usedBF[bf.bfIndex]) {
scores[bf.bfIndex] = Double.POSITIVE_INFINITY;
} else {
final double leftScore;
{
final AdditiveStatistics in = (AdditiveStatistics) loss.statsFactory().create();
in.append(current.nonCriticalTotal);
in.append(left);
final AdditiveStatistics out = (AdditiveStatistics) loss.statsFactory().create();
out.append(current.excluded);
out.append(right);
double reg = 1 + (Math.log(AdditiveStatisticsExtractors.weight(in) + 1)) + (conditions.size() + maxFailed + 1) * Math.log(alpha);
// reg /= (1 + maxFailed);
// / Math.log(2 + maxFailed + conditions.size())
// leftScore = (loss.score(in) + loss.score(out)) / Math.log(2 + maxFailed + conditions.size());
// leftScore = (loss.score(in)) * reg
leftScore = loss.score(in) * reg;
}
final double rightScore;
{
final AdditiveStatistics in = (AdditiveStatistics) loss.statsFactory().create();
in.append(current.nonCriticalTotal);
in.append(right);
final AdditiveStatistics out = (AdditiveStatistics) loss.statsFactory().create();
out.append(current.excluded);
out.append(left);
// reg /= (1 + 0.5maxFailed);
// / Math.log(2 + maxFailed + conditions.size())
// rightScore = (loss.score(in) + loss.score(out)) / Math.log(2 + maxFailed + conditions.size());
// rightScore = (loss.score(in)) * reg;
double reg = 1 + (Math.log(AdditiveStatisticsExtractors.weight(in) + 1)) + (conditions.size() + maxFailed + 1) * Math.log(alpha);
rightScore = loss.score(in) * reg;
}
scores[bf.bfIndex] = leftScore > rightScore ? rightScore : leftScore;
isRight[bf.bfIndex] = leftScore > rightScore;
}
}
});
final int bestSplit = ArrayTools.min(scores);
if (bestSplit < 0)
break;
if ((scores[bestSplit] + 1e-9 >= currentScore))
break;
final BFGrid.BinaryFeature bestSplitBF = grid.bf(bestSplit);
final boolean bestSplitMask = isRight[bestSplitBF.bfIndex];
final BFOptimizationSubset outRegion = current.split(bestSplitBF, bestSplitMask);
if (outRegion == null) {
break;
}
conditions.add(bestSplitBF);
usedBF[bestSplitBF.bfIndex] = true;
mask.add(bestSplitMask);
currentScore = scores[bestSplit];
currentInside = (AdditiveStatistics) loss.statsFactory().create();
currentInside.append(current.total());
currentOutside = (AdditiveStatistics) loss.statsFactory().create();
currentOutside.append(current.excluded);
}
final boolean[] masks = new boolean[conditions.size()];
for (int i = 0; i < masks.length; i++) {
masks[i] = mask.get(i);
}
final Region region = new Region(conditions, masks,
// loss.bestIncrement(currentInside), loss.bestIncrement(currentOutside), -1, currentScore, maxFailed);
loss.bestIncrement(currentInside), 0, -1, currentScore, maxFailed);
return region;
}
}