com.expleague.ml.methods.seq.PNFAClassifier Maven / Gradle / Ivy
//package com.expleague.ml.methods.seq;
//
//import com.expleague.commons.math.FuncC1;
//import com.expleague.commons.math.MathTools;
//import com.expleague.commons.math.vectors.Mx;
//import com.expleague.commons.math.vectors.MxTools;
//import com.expleague.commons.math.vectors.Vec;
//import com.expleague.commons.math.vectors.VecTools;
//import com.expleague.commons.math.vectors.impl.mx.VecBasedMx;
//import com.expleague.commons.math.vectors.impl.vectors.ArrayVec;
//import com.expleague.commons.math.vectors.impl.vectors.SparseVec;
//import com.expleague.commons.seq.IntSeq;
//import com.expleague.commons.seq.Seq;
//import com.expleague.ml.data.set.DataSet;
//import com.expleague.ml.func.FuncEnsemble;
//import com.expleague.ml.loss.LLLogit;
//import com.expleague.ml.loss.WeightedL2;
//import com.expleague.ml.methods.SeqOptimization;
//import com.expleague.ml.optimization.Optimize;
//import gnu.trove.map.TIntIntMap;
//import gnu.trove.map.hash.TIntIntHashMap;
//
//import java.util.*;
//import java.util.function.Function;
//
//public class PNFAClassifier implements SeqOptimization{
// private final PNFARegressor regressor;
//
// public PNFAClassifier(PNFARegressor delegate) {
// this.regressor = delegate;
// }
//
// @Override
// public Function, Vec> fit(final DataSet> learn, final Loss loss) {
//
// return new PNFAModel(params, stateCount, stateDim, addToDiag, lambda);
// }
//}