All Downloads are FREE. Search and download functionalities are using the official Maven repository.
Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
com.expleague.ml.models.nn.NeuralSpider Maven / Gradle / Ivy
package com.expleague.ml.models.nn;
import com.expleague.commons.math.TransC1;
import com.expleague.commons.math.vectors.Vec;
import com.expleague.commons.math.vectors.impl.ThreadLocalArrayVec;
import com.expleague.commons.seq.Seq;
import com.expleague.commons.util.ThreadTools;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ThreadPoolExecutor;
import static java.util.Arrays.stream;
/**
* User: solar
* Date: 25.05.15
* Time: 12:57
*/
public class NeuralSpider {
private final static int parallelism = ThreadTools.COMPUTE_UNITS;
private ThreadPoolExecutor poolExecutor = ThreadTools.createBGExecutor("NeuralSpider calculators", parallelism);
public interface ForwardNode {
double apply(Vec state, Vec betta, int nodeIdx);
double activate(double value);
double grad(double value);
int start(int nodeIdx);
int end(int nodeIdx);
}
public interface BackwardNode {
double apply(Vec state, Vec gradState, Vec gradAct, Vec betta, int nodeIdx);
int start(int nodeIdx);
int end(int nodeIdx);
class Stub implements BackwardNode {
@Override
public double apply(Vec state, Vec gradState, Vec gradAct, Vec betta, int nodeIdx) {
return 0;
}
@Override
public int start(int nodeIdx) {
return 0;
}
@Override
public int end(int nodeIdx) {
return 0;
}
}
}
private final ThreadLocalArrayVec stateCache = new ThreadLocalArrayVec();
private final ThreadLocalArrayVec gradientACache = new ThreadLocalArrayVec();
private final ThreadLocalArrayVec gradientSCache = new ThreadLocalArrayVec();
public synchronized Vec compute(final NetworkBuilder.Network network, In argument, Vec weights) {
final Vec state = stateCache.get(network.stateDim());
network.setInput(argument, state);
Seq nodes = network.forwardFlow();
produceState(nodes, weights, state);
return network.outputFrom(state);
}
private static void mirror(int[] arr) {
for(int i = 0; i < arr.length/2; ++i) {
int temp = arr[i];
arr[i] = arr[arr.length - i - 1];
arr[arr.length - i - 1] = temp;
}
}
public synchronized Vec parametersGradient(final NetworkBuilder.Network network, In argument,
TransC1 target, Vec weights, Vec gradWeight) {
final Vec state = stateCache.get(network.stateDim());
final Vec gradAct = gradientACache.get(network.stateDim());
network.setInput(argument, state);
final Seq nodes = network.forwardFlow();
final Seq backwardNodes = network.backwardFlow();
final Seq weightNodes = network.gradientFlow();
final Vec gradState = gradientSCache.get(backwardNodes.length() + network.ydim());
produceStateWithGrad(nodes, weights, state, gradAct);
final Vec output = network.outputFrom(state);
target.gradientTo(output, gradState.sub(gradState.length() - network.ydim(), network.ydim()));
{
final CountDownLatch latch = new CountDownLatch(parallelism);
final int steps = (backwardNodes.length() + parallelism - 1) / parallelism;
final int[] cursor = new int[parallelism + 1];
cursor[0] = backwardNodes.length();
for (int i = 1; i < cursor.length; i++) {
cursor[i] = backwardNodes.length();
}
for (int t = 0; t < parallelism; t++) {
final int thread = t;
this.poolExecutor.execute(() -> {
int i = steps;
while (i >= 0) {
final int nodeIdx = thread + i * parallelism;
if (nodeIdx >= backwardNodes.length()) {
i--;
continue;
}
final BackwardNode node = backwardNodes.at(nodeIdx);
final int start = node.start(nodeIdx);
cursor[thread + 1] = start;
if (start >= cursor[0]) {
final double dTds_i = node.apply(state, gradState, gradAct, weights, nodeIdx);
gradState.set(nodeIdx, dTds_i);
i--;
} else {
final int result = stream(cursor, 1, cursor.length).sorted().max().getAsInt();
cursor[0] = result;
if (start < cursor[0]) {
Thread.yield();
}
}
}
cursor[thread + 1] = 0;
latch.countDown();
});
}
try {
latch.await();
}
catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
{
final CountDownLatch latch = new CountDownLatch(parallelism);
final int steps = (weightNodes.length() + parallelism - 1) / parallelism;
for (int t = 0; t < parallelism; t++) {
final int thread = t;
this.poolExecutor.execute(() -> {
for (int i = steps; i >= 0; i--) {
final int nodeIdx = thread + i * parallelism;
if (nodeIdx >= weightNodes.length())
continue;
final BackwardNode node = weightNodes.at(nodeIdx);
final double dTds_i = node.apply(state, gradState, gradAct, gradWeight, nodeIdx);
gradWeight.set(nodeIdx, dTds_i);
}
latch.countDown();
});
}
try {
latch.await();
}
catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
return gradWeight;
}
private void produceState(Seq nodes, Vec weights, Vec state) {
final int[] cursor = new int[parallelism + 1];
final CountDownLatch latch = new CountDownLatch(parallelism);
final int steps = (nodes.length() + parallelism - 1) / parallelism;
for (int t = 0; t < parallelism; t++) {
final int thread = t;
this.poolExecutor.execute(() ->
{
int i = 0;
while(i < steps) {
final int nodeIdx = thread + i * parallelism;
if (nodeIdx >= state.length())
break;
final ForwardNode at = nodes.at(nodeIdx);
final int end = at.end(nodeIdx);
cursor[thread + 1] = end;
if (end <= cursor[0]) {
final double value = at.apply(state, weights, nodeIdx);
state.set(nodeIdx, at.activate(value));
i++;
}
else {
cursor[0] = stream(cursor, 1, cursor.length)
.sorted().min().getAsInt();
if (end > cursor[0]) {
Thread.yield();
}
}
}
cursor[thread + 1] = nodes.length();
latch.countDown();
}
);
}
try {
latch.await();
}
catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
private void produceStateWithGrad(Seq nodes, Vec weights, Vec state, Vec gradAct) {
final int[] cursor = new int[parallelism + 1];
final CountDownLatch latch = new CountDownLatch(parallelism);
final int steps = (nodes.length() + parallelism - 1) / parallelism;
for (int t = 0; t < parallelism; t++) {
final int thread = t;
this.poolExecutor.execute(() ->
{
int i = 0;
while(i < steps) {
final int nodeIdx = thread + i * parallelism;
if (nodeIdx >= state.length())
break;
final ForwardNode at = nodes.at(nodeIdx);
int end = at.end(nodeIdx);
cursor[thread + 1] = end;
if (end <= cursor[0]) {
final double value = at.apply(state, weights, nodeIdx);
state.set(nodeIdx, at.activate(value));
gradAct.set(nodeIdx, at.grad(value));
i++;
}
else {
cursor[0] = stream(cursor, 1, cursor.length)
.sorted().min().getAsInt();
if (cursor[0] < end) {
Thread.yield();
}
}
}
cursor[thread + 1] = nodes.length();
latch.countDown();
}
);
}
try {
latch.await();
}
catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
}