All Downloads are FREE. Search and download functionalities are using the official Maven repository.
Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
com.expleague.ml.optimization.impl.OnlineDescent Maven / Gradle / Ivy
package com.expleague.ml.optimization.impl;
import com.expleague.commons.math.FuncC1;
import com.expleague.commons.math.MathTools;
import com.expleague.commons.math.TransC1;
import com.expleague.commons.math.vectors.Vec;
import com.expleague.commons.math.vectors.VecTools;
import com.expleague.commons.math.vectors.impl.vectors.ArrayVec;
import com.expleague.commons.random.FastRandom;
import com.expleague.ml.func.FuncEnsemble;
import com.expleague.ml.func.ReguralizerFunc;
import com.expleague.ml.optimization.Optimize;
import com.expleague.ml.optimization.StochasticGradientDescent;
import gnu.trove.list.array.TDoubleArrayList;
import gnu.trove.list.array.TIntArrayList;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
import java.util.function.Function;
import java.util.stream.IntStream;
import static java.lang.Math.log;
public class OnlineDescent implements Optimize> {
private final double step;
private final FastRandom random;
public OnlineDescent(final double step, final FastRandom random) {
this.step = step;
this.random = random;
}
private long time;
@Override
public Vec optimize(final FuncEnsemble extends FuncC1> ensemble, ReguralizerFunc reg, final Vec x0) {
time = System.nanoTime();
Vec cursor = VecTools.copy(x0);
TIntArrayList taken = new TIntArrayList();
List lStat = new ArrayList<>();
final Vec L = new ArrayVec(cursor.dim());
// VecTools.fill(L, step / MathTools.EPSILON);
final TDoubleArrayList lambdas = new TDoubleArrayList();
final TDoubleArrayList gradModules = new TDoubleArrayList();
final List grads = new ArrayList<>();
final Vec totalGrad = new ArrayVec(cursor.dim());
Vec prev = VecTools.copy(cursor);
for (int t = 0; t < ensemble.size(); t++) {
int nextTaken = 0;
{
int nextIdx = random.nextInt(ensemble.size() - taken.size());
for (int j = 0, takenIdx = 0; j < ensemble.size(); j++) {
if (taken.size() > j && taken.get(takenIdx) == j) {
takenIdx++;
}
else if (--nextIdx == 0) {
taken.add(nextTaken = j);
break;
}
}
}
final int samples = (int)Math.sqrt(t);
final Vec grad = new ArrayVec(cursor.dim());
final Vec next = new ArrayVec(cursor.dim());
final Vec sampledGrad = new ArrayVec(cursor.dim());
final FuncC1 model = ensemble.models[nextTaken];
double v0 = model.value(cursor);
int iter = 0;
for (; iter < 100; iter++) {
final Vec lambdasVec = new ArrayVec(lambdas.toArray());
final int statSize = lStat.size();
VecTools.fill(sampledGrad, 0);
model.gradientTo(cursor, grad);
VecTools.incscale(sampledGrad, grad, 1. / (samples + 1));
IntStream.range(0, samples).parallel().forEach(s -> {
// int sample = random.nextSimple(lambdasVec);
int sample = random.nextInt(taken.size() - 1);
Vec g = ensemble.models[taken.get(sample)].gradient(cursor);
synchronized (sampledGrad) {
VecTools.incscale(sampledGrad, g, 1. / (samples + 1));
VecTools.incscale(totalGrad, grads.get(sample), -1);
VecTools.append(totalGrad, g);
gradModules.set(sample, VecTools.norm(g));
grads.set(sample, VecTools.copySparse(g));
lambdas.set(sample, Math.abs(VecTools.multiply(g, L) / VecTools.sum(g)));
}
});
{
for (int i = 0; i < sampledGrad.dim(); i++) {
L.set(i, Math.max(L.get(i), Math.abs(sampledGrad.get(i))));
}
lStat.add(VecTools.copy(sampledGrad));
if (statSize > 20000) {
lStat = new ArrayList<>(lStat.subList(statSize - 10000, statSize));
VecTools.fill(L, MathTools.EPSILON);
lStat.forEach(v -> {
for (int i = 0; i < v.dim(); i++) {
L.set(i, Math.max(L.get(i), Math.abs(v.get(i))));
}
});
}
}
double gradNorm = Math.sqrt(VecTools.sum2(sampledGrad) / sampledGrad.dim());
VecTools.assign(next, cursor);
for (int i = 0; i < cursor.dim(); i++) {
double L_i = L.get(i);
sampledGrad.set(i, step * sampledGrad.get(i) / (L_i > 0 ? L_i : MathTools.EPSILON));
}
VecTools.incscale(next, sampledGrad, -1);
reg.project(next);
if (gradNorm < 1e-3) {
break;
}
VecTools.assign(cursor, next);
}
gradModules.add(VecTools.norm(grad));
grads.add(VecTools.copySparse(grad));
lambdas.add(Math.abs(VecTools.multiply(grad, L) / VecTools.sum(grad)));
VecTools.append(totalGrad, grad);
if (taken.size() % 100 == 0) {
System.out.println("taken: " + taken.size() + " diff: " + VecTools.norm(VecTools.subtract(cursor, prev)) + " v_x^T= " + (model).value(cursor) + " V+R= " + (ensemble.value(cursor) + reg.value(cursor)) + " V= " + ensemble.value(cursor) + " iter: " + iter + " v_x^0= " + v0);
System.out.println(cursor);
prev = VecTools.copy(cursor);
}
}
return cursor;
}
}