All Downloads are FREE. Search and download functionalities are using the official Maven repository.
Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
com.expleague.ml.optimization.impl.SAGADescent Maven / Gradle / Ivy
package com.expleague.ml.optimization.impl;
import com.expleague.commons.math.FuncC1;
import com.expleague.commons.math.MathTools;
import com.expleague.commons.math.vectors.Vec;
import com.expleague.commons.math.vectors.VecIterator;
import com.expleague.commons.math.vectors.VecTools;
import com.expleague.commons.math.vectors.impl.vectors.ArrayVec;
import com.expleague.ml.func.FuncEnsemble;
import com.expleague.ml.func.ReguralizerFunc;
import com.expleague.ml.optimization.Optimize;
import java.io.PrintStream;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
import java.util.stream.IntStream;
public class SAGADescent implements Optimize> {
private final double step;
private final int maxIter;
private final Random random;
private final PrintStream debug;
private long time;
public SAGADescent(final double step, final int maxIter, final Random random, PrintStream debug) {
this.step = step;
this.maxIter = maxIter;
this.random = random;
this.debug = debug;
}
@Override
public Vec optimize(final FuncEnsemble extends FuncC1> sumFuncs) {
final Vec x = new ArrayVec(sumFuncs.dim());
for (int i = 0; i < sumFuncs.dim(); i++) {
x.set(i, random.nextGaussian());
}
return optimize(sumFuncs, x);
}
@Override
public Vec optimize(final FuncEnsemble extends FuncC1> ensemble, ReguralizerFunc reg, final Vec x0) {
time = System.nanoTime();
Vec x = VecTools.copy(x0);
final Vec[] lastGrad = new Vec[ensemble.size()];
final int[] components = {0};
final int[] iter = {0};
final boolean[] occupied = new boolean[ensemble.size()];
final Vec totalGrad = new ArrayVec(x.dim());
final Vec L = new ArrayVec(x.dim());
final List lStats = new ArrayList<>();
VecTools.fill(L, 1./MathTools.EPSILON);
final ReadWriteLock xLock = new ReentrantReadWriteLock();
IntStream.range(0, maxIter).parallel().forEach(idx -> {
Vec grad = new ArrayVec(x.dim());
Vec step = null;
final int component;
xLock.readLock().lock();
try {
int next;
do {
next = random.nextInt(ensemble.size());
}
while (occupied[next]);
component = next;
occupied[component] = true;
ensemble.models[component].gradientTo(x, grad);
if (lastGrad[component] != null) {
step = VecTools.copy(grad);
VecTools.incscale(step, lastGrad[component], -1);
VecTools.incscale(step, totalGrad, 1. / components[0]);
double max = VecTools.max(L);
for (int i = 0; i < step.dim(); i++) {
double l_i = L.get(i);
double v = l_i > 0 ? l_i : max;
step.set(i, step.get(i) / v);
}
}
}
finally {
xLock.readLock().unlock();
}
Vec gradSparse = VecTools.isSparse(grad, MathTools.EPSILON) ? VecTools.copySparse(grad) : VecTools.copy(grad);
xLock.writeLock().lock();
try {
final int it = ++iter[0];
if (step != null) {
VecTools.incscale(x, step, -this.step * 1/3);
reg.project(x);
}
else components[0]++;
{ // update total
if (lastGrad[component] != null)
VecTools.incscale(totalGrad, lastGrad[component], -1);
VecTools.append(totalGrad, grad);
lastGrad[component] = gradSparse;
}
{
updateL(L, lStats, grad, gradSparse);
}
occupied[component] = false;
if (debug != null && (it % 10000) == 0) {
final long newTime = System.nanoTime();
debug.printf("Iteration %d: value=%.6f time=%dms |x|=%.4f\n", it, ensemble.value(x), TimeUnit.NANOSECONDS.toMillis(newTime - time), VecTools.norm(x));
time = newTime;
}
}
finally {
xLock.writeLock().unlock();
}
});
return x;
}
private void updateL(Vec l, List lStats, Vec grad, Vec copySparse) {
for (int i = 0; i < grad.dim(); i++) {
l.set(i, Math.max(l.get(i), Math.abs(grad.get(i))));
}
lStats.add(copySparse);
if (lStats.size() > 10000) {
final List copy = new ArrayList<>(lStats.subList(lStats.size() - 9000, lStats.size()));
Vec count = new ArrayVec(grad.dim());
lStats.clear();
lStats.addAll(copy);
VecTools.fill(l, MathTools.EPSILON);
lStats.forEach(g -> {
VecIterator nz = g.nonZeroes();
while (nz.advance()) {
double abs = Math.abs(nz.value());
if (abs != 0)
count.adjust(nz.index(), 1);
l.set(nz.index(), Math.max(l.get(nz.index()), abs));
}
});
double max = VecTools.max(l);
for (int i = 0; i < l.dim(); i++) {
if (count.get(i) < 10) {
l.set(i, max);
}
}
}
}
}