com.expleague.ml.cli.output.printers.DefaultProgressPrinter Maven / Gradle / Ivy
package com.expleague.ml.cli.output.printers;
import com.expleague.commons.math.Func;
import com.expleague.commons.math.Trans;
import com.expleague.commons.math.vectors.Mx;
import com.expleague.commons.math.vectors.Vec;
import com.expleague.commons.math.vectors.VecTools;
import com.expleague.commons.math.vectors.impl.vectors.ArrayVec;
import com.expleague.ml.data.impl.BinarizedDataSet;
import com.expleague.ml.data.set.VecDataSet;
import com.expleague.ml.data.tools.Pool;
import com.expleague.ml.BinModelWithGrid;
import com.expleague.ml.Binarize;
import com.expleague.ml.ProgressHandler;
import com.expleague.ml.func.Ensemble;
/**
* User: qdeee
* Date: 04.09.14
*/
public class DefaultProgressPrinter implements ProgressHandler {
private final Func loss;
private final Func[] testMetrics;
private final int printPeriod;
private Vec learnValues;
private final Vec[] testValuesArray;
private VecDataSet learnDs;
private VecDataSet testDs;
public DefaultProgressPrinter(final Pool learn, final Pool test, final Func learnMetric, final Func[] testMetrics, final int printPeriod) {
this.loss = learnMetric;
this.testMetrics = testMetrics;
this.printPeriod = printPeriod;
learnValues = new ArrayVec(learnMetric.xdim());
testValuesArray = new Vec[testMetrics.length];
for (int i = 0; i < testValuesArray.length; i++) {
testValuesArray[i] = new ArrayVec(testMetrics[i].xdim());
}
this.learnDs = learn.vecData();
this.testDs = test.vecData();
}
int iteration = 0;
@Override
public void accept(final Trans partial) {
iteration++;
if (partial instanceof Ensemble) {
final Ensemble ensemble = (Ensemble) partial;
final double step = ensemble.wlast();
final Trans last = ensemble.last();
final Mx learnTrans;
final Mx testTrans;
if (last instanceof BinModelWithGrid) {
BinModelWithGrid model = (BinModelWithGrid) last;
BinarizedDataSet learnSet = learnDs.cache().cache(Binarize.class, VecDataSet.class).binarize(model.grid());
BinarizedDataSet testSet = testDs.cache().cache(Binarize.class, VecDataSet.class).binarize(model.grid());
learnTrans = model.transAll(learnSet);
testTrans = model.transAll(testSet);
} else {
learnTrans = last.transAll(learnDs.data());
testTrans = last.transAll(testDs.data());
}
VecTools.append(learnValues, VecTools.scale(learnTrans, step));
final Mx testEvaluation = VecTools.scale(testTrans, step);
for (int t = 0; t < testValuesArray.length; ++t) {
VecTools.append(testValuesArray[t], testEvaluation);
}
} else if (iteration % printPeriod == 0) {
learnValues = partial.transAll(learnDs.data());
final Mx testEvaluate = partial.transAll(testDs.data());
for (int i = 0; i < testValuesArray.length; i++) {
testValuesArray[i] = testEvaluate;
}
}
if (iteration % printPeriod != 0) {
return;
}
System.out.print(iteration);
System.out.print("\t" + loss.value(learnValues));
for (int i = 0; i < testMetrics.length; i++) {
System.out.print("\t" + testMetrics[i].value(testValuesArray[i]));
}
System.out.println();
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy