com.expleague.ml.cli.output.printers.MultiLabelLogitProgressPrinter Maven / Gradle / Ivy
package com.expleague.ml.cli.output.printers;
import com.expleague.commons.math.Func;
import com.expleague.commons.math.Trans;
import com.expleague.commons.math.vectors.Mx;
import com.expleague.commons.math.vectors.VecTools;
import com.expleague.ml.data.set.VecDataSet;
import com.expleague.ml.data.tools.Pool;
import com.expleague.ml.func.FuncJoin;
import com.expleague.ml.loss.blockwise.BlockwiseMultiLabelLogit;
import com.expleague.ml.loss.multilabel.MultiLabelMicroFScore;
import com.expleague.ml.models.multiclass.MCModel;
import com.expleague.ml.models.multilabel.MultiLabelModel;
import com.expleague.commons.math.vectors.impl.mx.VecBasedMx;
import com.expleague.ml.ProgressHandler;
import com.expleague.ml.func.Ensemble;
import com.expleague.ml.loss.multilabel.MultiLabelExactMatch;
import com.expleague.ml.loss.multilabel.MultiLabelHammingLoss;
import com.expleague.ml.loss.multilabel.MultiLabelMacroFScore;
import java.util.ArrayList;
import java.util.List;
import static com.expleague.commons.math.vectors.VecTools.append;
import static com.expleague.commons.math.vectors.VecTools.scale;
/**
* User: qdeee
* Date: 03.04.15
*/
public class MultiLabelLogitProgressPrinter implements ProgressHandler {
private final VecDataSet learn;
private final VecDataSet test;
private final BlockwiseMultiLabelLogit learnLogit;
private final BlockwiseMultiLabelLogit testLogit;
private final Mx learnValues;
private final Mx testValues;
private final List learnMetrics = new ArrayList<>();
private final List testMetrics = new ArrayList<>();
private final int itersForOut;
private int iteration = 0;
public MultiLabelLogitProgressPrinter(final Pool> learn, final Pool> test) {
this(learn, test, 10);
}
public MultiLabelLogitProgressPrinter(final Pool> learn, final Pool> test, final int itersForOut) {
this.learn = learn.vecData();
this.test = test.vecData();
this.learnLogit = learn.target(BlockwiseMultiLabelLogit.class);
this.testLogit = test.target(BlockwiseMultiLabelLogit.class);
this.learnValues = new VecBasedMx(learn.size(), learnLogit.blockSize());
this.testValues = new VecBasedMx(test.size(), testLogit.blockSize());
this.learnMetrics.add(learn.target(MultiLabelExactMatch.class));
this.learnMetrics.add(learn.target(MultiLabelMicroFScore.class));
this.learnMetrics.add(learn.target(MultiLabelMacroFScore.class));
this.learnMetrics.add(learn.target(MultiLabelHammingLoss.class));
this.testMetrics.add(test.target(MultiLabelExactMatch.class));
this.testMetrics.add(test.target(MultiLabelMicroFScore.class));
this.testMetrics.add(test.target(MultiLabelMacroFScore.class));
this.testMetrics.add(test.target(MultiLabelHammingLoss.class));
this.itersForOut = itersForOut;
}
@Override
public void accept(final Trans partial) {
if (isBoostingProcess(partial)) {
final Ensemble ensemble = (Ensemble) partial;
final double step = ensemble.wlast();
final FuncJoin model = (FuncJoin) ensemble.last();
//caching boosting results
append(learnValues, scale(model.transAll(learn.data()), step));
append(testValues, scale(model.transAll(test.data()), step));
}
iteration++;
if (iteration % itersForOut == 0) {
final Mx learnPredicted;
final Mx testPredicted;
if (isBoostingProcess(partial)) {
learnPredicted = VecTools.toBinary(VecTools.copy(learnValues));
testPredicted = VecTools.toBinary(VecTools.copy(testValues));
} else if (partial instanceof MCModel) {
final MultiLabelModel mcModel = (MultiLabelModel) partial;
learnPredicted = mcModel.predictLabelsAll(learn.data());
testPredicted = mcModel.predictLabelsAll(test.data());
} else return;
System.out.print(iteration);
System.out.print(" " + learnLogit.value(learnValues));
System.out.print(" " + testLogit.value(testValues));
System.out.print(" { ");
for (Func learnMetric : learnMetrics) {
System.out.print(learnMetric.value(learnPredicted));
System.out.print(" ");
}
System.out.printf("} {");
for (Func testMetric : testMetrics) {
System.out.print(testMetric.value(testPredicted));
System.out.print(" ");
}
System.out.printf("}\n");
}
}
private static boolean isBoostingProcess(final Trans partial) {
return partial instanceof Ensemble && ((Ensemble) partial).last() instanceof FuncJoin;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy