com.expleague.ml.clustering.impl.NearestCentroidDRAlgorithm Maven / Gradle / Ivy
package com.expleague.ml.clustering.impl;
import com.expleague.commons.math.metrics.Metric;
import com.expleague.ml.clustering.ClusterizationAlgorithm;
import com.expleague.commons.math.vectors.Vec;
import com.expleague.commons.math.vectors.VecTools;
import com.expleague.commons.util.CollectionTools;
import com.expleague.commons.util.Pair;
import org.jetbrains.annotations.NotNull;
import java.util.Collection;
import java.util.Collections;
import java.util.HashSet;
import java.util.function.Function;
/**
* User: terry
* Date: 16.01.2010
*/
public class NearestCentroidDRAlgorithm implements ClusterizationAlgorithm {
private final Metric metric;
private final double acceptanceDistance;
private final double distanceRatio;
public NearestCentroidDRAlgorithm(final Metric metric, final double acceptanceDistance, final double distanceRatio) {
this.metric = metric;
this.acceptanceDistance = acceptanceDistance;
this.distanceRatio = distanceRatio;
}
@NotNull
@Override
public Collection extends Collection> cluster(final Collection dataSet, final Function data2DVector) {
final Collection,Vec>> clusters = new HashSet<>();
for (final X data : dataSet) {
final Vec dataVector = data2DVector.apply(data);
Pair, Vec> nearestCluster = null;
double nearestDistance = Double.MAX_VALUE;
double nearest2Distance = Double.MAX_VALUE;
for (final Pair, Vec> pair : clusters) {
final double candidateDistance = metric.distance(pair.getSecond(), dataVector);
if (candidateDistance < nearestDistance) {
nearestDistance = candidateDistance;
nearestCluster = pair;
}
else if (candidateDistance < nearest2Distance) {
nearest2Distance = candidateDistance;
}
}
final boolean good = nearestDistance < acceptanceDistance && (nearest2Distance == Double.MAX_VALUE || nearestDistance / nearest2Distance < distanceRatio);
if (nearestCluster == null || !good) {
clusters.add(Pair.,Vec>create(new HashSet<>(Collections.singleton(data)), dataVector));
} else {
final Collection collection = nearestCluster.getFirst();
final Vec centroid = nearestCluster.getSecond();
VecTools.scale(centroid, collection.size());
VecTools.append(centroid, dataVector);
collection.add(data);
VecTools.scale(centroid, 1./collection.size());
}
}
return CollectionTools.mapFirst(clusters);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy