com.expleague.ml.loss.multiclass.util.MultilabelConfusionMatrix Maven / Gradle / Ivy
package com.expleague.ml.loss.multiclass.util;
import com.expleague.commons.math.vectors.Mx;
import com.expleague.commons.math.vectors.VecTools;
import com.expleague.commons.util.table.TableBuilder;
import com.expleague.commons.util.ArrayTools;
/**
* User: qdeee
* Date: 24.03.15
*/
public class MultilabelConfusionMatrix {
private ConfusionMatrix[] matrixes;
public MultilabelConfusionMatrix(final Mx targets, final Mx predicted) {
matrixes = new ConfusionMatrix[targets.columns()];
for (int j = 0; j < matrixes.length; j++) {
matrixes[j] = new ConfusionMatrix(
VecTools.toIntSeq(targets.col(j)),
VecTools.toIntSeq(predicted.col(j))
);
}
}
public String toSummaryString() {
final double[] microPrecision = new double[matrixes.length];
final double[] macroPrecision = new double[matrixes.length];
final double[] macroRecall = new double[matrixes.length];
final double[] macroFScore = new double[matrixes.length];
for (int i = 0; i < matrixes.length; i++) {
microPrecision[i] = matrixes[i].getMicroPrecision();
macroPrecision[i] = matrixes[i].getMacroPrecision();
macroRecall[i] = matrixes[i].getMacroRecall();
macroFScore[i] = matrixes[i].getMacroF1Measure();
}
final TableBuilder tableBuilder = new TableBuilder();
tableBuilder.setHeader("Metric\\Label", ArrayTools.sequence(0, matrixes.length));
// tableBuilder.addRow("Micro precision: ", microPrecision);
// tableBuilder.addRow("Micro recall: ", microPrecision);
// tableBuilder.addRow("Micro F1-measure: ", microPrecision);
tableBuilder.addRow("Macro precision: ", macroPrecision);
tableBuilder.addRow("Macro recall: ", macroRecall);
tableBuilder.addRow("Macro F1-measure: ", macroFScore);
return "=== Summary ===\n" + tableBuilder.build();
}
public String toClassDetailsString() {
final double[] precision0 = new double[matrixes.length];
final double[] precision1 = new double[matrixes.length];
final double[] recall0 = new double[matrixes.length];
final double[] recall1 = new double[matrixes.length];
final double[] fScore0 = new double[matrixes.length];
final double[] fScore1 = new double[matrixes.length];
for (int i = 0; i < matrixes.length; i++) {
precision0[i] = matrixes[i].getPrecision(0);
precision1[i] = matrixes[i].getPrecision(1);
recall0[i] = matrixes[i].getRecall(0);
recall1[i] = matrixes[i].getRecall(1);
fScore0[i] = matrixes[i].getF1Measure(0);
fScore1[i] = matrixes[i].getF1Measure(1);
}
final TableBuilder tableBuilder = new TableBuilder();
final String table = tableBuilder
.setHeader("metric\\label", ArrayTools.sequence(0, matrixes.length))
.addRow("[0] precision", precision0)
.addRow("[0] recall", recall0)
.addRow("[0] f1-score", fScore0)
.addRow("[1] precision", precision1)
.addRow("[1] recall", recall1)
.addRow("[1] f1-score", fScore1)
.build();
return "=== Detailed Accuracy By Class ===\n" + table;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy