com.expleague.ml.methods.LassoGradientBoosting Maven / Gradle / Ivy
package com.expleague.ml.methods;
import com.expleague.commons.func.impl.WeakListenerHolderImpl;
import com.expleague.commons.math.Trans;
import com.expleague.commons.math.vectors.Mx;
import com.expleague.commons.math.vectors.Vec;
import com.expleague.commons.math.vectors.VecTools;
import com.expleague.commons.math.vectors.impl.vectors.ArrayVec;
import com.expleague.ml.data.set.VecDataSet;
import com.expleague.ml.data.tools.DataTools;
import com.expleague.ml.loss.L2;
import com.expleague.ml.loss.L2Reg;
import com.expleague.commons.math.vectors.impl.mx.VecBasedMx;
import com.expleague.commons.util.ArrayTools;
import com.expleague.ml.func.Ensemble;
import java.util.ArrayList;
import java.util.List;
/**
* Created by noxoomo on 09/02/15.
*/
public class LassoGradientBoosting extends WeakListenerHolderImpl implements VecOptimization {
protected final VecOptimization weak;
private final Class extends L2> factory;
int iterationsCount;
double lambda = 1e-3;
double alpha = 1.0;
public void setAlpha(double alpha) {
this.alpha = alpha;
}
public void setLambda(double lambda) {
this.lambda = lambda;
}
public LassoGradientBoosting(final VecOptimization weak, final int iterationsCount) {
this(weak, L2Reg.class, iterationsCount);
}
public LassoGradientBoosting(final VecOptimization weak, final Class extends L2> factory, final int iterationsCount) {
this.weak = weak;
this.factory = factory;
this.iterationsCount = iterationsCount;
}
@Override
public Ensemble fit(final VecDataSet learn, final GlobalLoss globalLoss) {
Mx transformedData = new VecBasedMx(learn.data().rows(), iterationsCount);
ElasticNetMethod.ElasticNetCache lassoCache = new ElasticNetMethod.ElasticNetCache(transformedData, globalLoss.target, 0, alpha, lambda);
ElasticNetMethod lasso = new ElasticNetMethod(1e-5, alpha, lambda);
final Vec cursor = new ArrayVec(globalLoss.xdim());
final List weakModels = new ArrayList<>(iterationsCount);
final Vec weights = new ArrayVec(iterationsCount);
final Trans gradient = globalLoss.gradient();
for (int t = 0; t < iterationsCount; t++) {
final Vec gradientValueAtCursor = gradient.trans(cursor);
final L2 localLoss = DataTools.newTarget(factory, gradientValueAtCursor, learn);
final Trans weakModel = weak.fit(learn, localLoss);
weakModels.add(weakModel);
Vec applied = weakModel.transAll(learn.data()).col(0);
for (int row = 0; row < learn.data().rows(); ++row) {
transformedData.set(row, t, -applied.get(row));
}
lassoCache.updateDim(t + 1);
Vec currentWeights = lasso.fit(lassoCache).weights;
{
VecTools.fill(cursor, 0.0);
for (int observation = 0; observation < cursor.dim(); ++observation) {
for (int weakFeature = 0; weakFeature < weakModels.size(); ++weakFeature)
cursor.adjust(observation, currentWeights.get(weakFeature) * transformedData.get(observation, weakFeature));
}
}
invoke(new LassoGBIterationResult(weakModel, cursor, currentWeights));
}
return new Ensemble(ArrayTools.toArray(weakModels), weights);
}
public static class LassoGBIterationResult {
public final Trans addedModel;
public final Vec newWeights;
public final Vec cursor;
public LassoGBIterationResult(final Trans model, final Vec cursor, final Vec newWeights) {
this.addedModel = model;
this.cursor = cursor;
this.newWeights = newWeights;
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy