com.expleague.ml.methods.LassoRegionsForest Maven / Gradle / Ivy
package com.expleague.ml.methods;
import com.expleague.commons.func.impl.WeakListenerHolderImpl;
import com.expleague.commons.math.Trans;
import com.expleague.commons.math.vectors.Mx;
import com.expleague.commons.math.vectors.Vec;
import com.expleague.commons.math.vectors.VecTools;
import com.expleague.commons.math.vectors.impl.vectors.ArrayVec;
import com.expleague.commons.random.FastRandom;
import com.expleague.ml.data.set.VecDataSet;
import com.expleague.ml.data.set.impl.VecDataSetImpl;
import com.expleague.ml.data.tools.DataTools;
import com.expleague.ml.func.Linear;
import com.expleague.ml.loss.L2;
import com.expleague.ml.loss.WeightedLoss;
import com.expleague.ml.methods.greedyRegion.BinaryRegion;
import com.expleague.ml.methods.greedyRegion.RegionBasedOptimization;
import com.expleague.ml.models.Region;
import com.expleague.commons.math.vectors.impl.mx.VecBasedMx;
import com.expleague.commons.util.ThreadTools;
import com.expleague.ml.func.Ensemble;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ThreadPoolExecutor;
public class LassoRegionsForest extends WeakListenerHolderImpl implements VecOptimization {
protected final FastRandom rnd;
private final int count;
private final RegionBasedOptimization> weak;
private double lambda;
private final double alpha;
private final double tolerance = 1e-5;
public LassoRegionsForest(RegionBasedOptimization> weak, FastRandom rnd,
final int count, final double lambda, final double alpha) {
this.count = count;
this.rnd = rnd;
this.weak = new BinaryRegion<>(weak);
this.lambda = lambda;
this.alpha = alpha;
}
public LassoRegionsForest(RegionBasedOptimization> weak, FastRandom rnd, final int count) {
this(weak, rnd, count, 1e-3, 1.0);
}
private static final ThreadPoolExecutor exec = ThreadTools.createBGExecutor("Lasso forest thread", -1);
@Override
public Trans fit(final VecDataSet learn, final Loss globalLoss) {
final Region[] weakModels = new Region[count];
final Mx transformedData = new VecBasedMx(learn.data().rows(), count);
final CountDownLatch latch = new CountDownLatch(count);
for (int i = 0; i < count; ++i) {
final int ind = i;
exec.submit(new Runnable() {
@Override
public void run() {
weakModels[ind] = weak.fit(learn, DataTools.bootstrap(globalLoss, rnd));
Mx applied = weakModels[ind].transAll(learn.data());
for (int row = 0; row < learn.data().rows(); ++row) {
transformedData.set(row, ind, applied.get(row, 0));
}
latch.countDown();
}
});
}
try {
latch.await();
} catch (Exception e) {
System.err.println("fit error");
}
ElasticNetMethod lasso = new ElasticNetMethod(tolerance, alpha, lambda);
Vec init = new ArrayVec(count);
VecTools.fill(init, 0.0);
Linear model = (Linear) lasso.fit(new VecDataSetImpl(transformedData, learn), globalLoss, init);
return new Ensemble(weakModels, model.weights);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy