com.expleague.ml.methods.greedyMergeOptimization.GreedyMergePick Maven / Gradle / Ivy
package com.expleague.ml.methods.greedyMergeOptimization;
import com.expleague.commons.math.MathTools;
import com.expleague.commons.util.BestHolder;
import com.expleague.commons.util.ThreadTools;
import com.expleague.ml.methods.greedyRegion.cnfMergeOptimization.CherryOptimizationSubset;
import java.text.NumberFormat;
import java.util.Comparator;
import java.util.Iterator;
import java.util.List;
import java.util.TreeSet;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ThreadPoolExecutor;
/**
* Created by noxoomo on 30/11/14.
*/
public class GreedyMergePick {
static ThreadPoolExecutor exec = ThreadTools.createBGExecutor("Greedy merge pick thread", -1);
private final MergeOptimization merger;
public GreedyMergePick(final MergeOptimization merger) {
this.merger = merger;
}
public Model pick(final List startModels, final RegularizedLoss loss) {
final NumberFormat pp = MathTools.numberFormatter();
if (startModels.isEmpty())
throw new IllegalArgumentException("Models list must be not empty");
final Comparator comparator = new Comparator() {
@Override
public int compare(final Model left, final Model right) {
final int cmp = Double.compare(loss.score(left), loss.score(right));
return cmp != 0 ? cmp : Integer.compare(left.index(), right.index());
}
};
final TreeSet models = new TreeSet<>(comparator);
models.addAll(startModels);
while (models.size() > 1) {
foo(loss, pp, models);
}
return models.first();
}
private void foo(final RegularizedLoss loss, final NumberFormat pp, final TreeSet models) {
final Model current;
{
final Iterator iterator = models.descendingIterator();
current = iterator.next();
iterator.remove();
}
final CountDownLatch latch = new CountDownLatch(models.size());
final double currentTarget = loss.target(current);
final double currentReg = loss.regularization(current);
final BestHolder bestHolder = new BestHolder<>();
// System.out.print(current.toString() + " score: " + pp.format(currentScore));
for (final Model model : models) {
exec.submit(new Runnable() {
@Override
public void run() {
try {
final Model merged = merger.merge(current, model);
if (merged.power() > model.power() && merged.power() > current.power()) {
final double mergedTarget = loss.target(merged);
final double mergedReg = loss.regularization(merged);
final double modelTarget = loss.target(model);
final double modelReg = loss.regularization(model);
final double gain = (merged.power() * ((modelTarget + currentTarget) / (model.power() + current.power())) - mergedTarget);
bestHolder.update(merged, gain);
}
}
catch(Throwable th) {
th.printStackTrace();
}
finally {
latch.countDown();
}
}
});
}
try {
latch.await();
} catch (InterruptedException e) {
//skip
}
final Model best = bestHolder.getValue();
if (bestHolder.getScore() > 0) {
models.add(best);
}
// else System.out.print(" WASTED ");
// if (bestHolder.filled())
// System.out.println(" -> " + best.toString() + " score: " + pp.format(loss.score(best)) + " gain: " + bestHolder.getScore());
// else
// System.out.println();
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy