com.expleague.ml.methods.greedyRegion.cherry.GreedyTDCherryRegion Maven / Gradle / Ivy
package com.expleague.ml.methods.greedyRegion.cherry;
import com.expleague.commons.math.Func;
import com.expleague.commons.math.Trans;
import com.expleague.commons.math.vectors.Vec;
import com.expleague.commons.random.FastRandom;
import com.expleague.ml.data.cherry.CherryLoss;
import com.expleague.ml.data.cherry.CherrySubset;
import com.expleague.ml.data.impl.BinarizedDataSet;
import com.expleague.ml.data.set.VecDataSet;
import com.expleague.ml.BFGrid;
import com.expleague.ml.loss.StatBasedLoss;
import com.expleague.ml.loss.WeightedLoss;
import com.expleague.ml.methods.VecOptimization;
import com.expleague.ml.models.CNF;
import com.expleague.commons.util.ArrayTools;
import com.expleague.ml.Binarize;
import com.expleague.ml.data.cherry.CherryPick;
import java.util.ArrayList;
import java.util.List;
/**
* User: solar
* Date: 15.11.12
* Time: 15:19
*/
public class GreedyTDCherryRegion extends VecOptimization.Stub {
public final BFGrid grid;
private final CherryPick pick = new CherryPick();
public GreedyTDCherryRegion(final BFGrid grid) {
this.grid = grid;
}
private int[] learnPoints(Loss loss, VecDataSet ds) {
if (loss instanceof WeightedLoss) {
return ((WeightedLoss) loss).points();
} else return ArrayTools.sequence(0, ds.length());
}
@Override
public CNF fit(final VecDataSet learn, final Loss loss) {
final List conditions = new ArrayList<>(100);
final BinarizedDataSet bds = learn.cache().cache(Binarize.class, VecDataSet.class).binarize(grid);
int[] points = learnPoints(loss, learn);
double currentScore = Double.NEGATIVE_INFINITY;
CherryLoss localLoss;
{
localLoss = new OutLoss3<>(new CherrySubset(bds,loss.statsFactory(),points), loss);
// RankedDataSet rds = learn.cache().cache(RankIt.class, VecDataSet.class).value();
// localLoss = new OutLoss<>(new CherryStochasticSubset(rds, bds, loss.statsFactory(), points), loss);
}
double bestIncInside = 0;
double bestIncOutside = 0;
while (true) {
final CNF.Clause clause = pick.fit(localLoss);
final double score = localLoss.score();
if (score <= currentScore + 1e-9) {
break;
}
System.out.println("\nAdded clause " + clause);
currentScore = score;
bestIncInside = localLoss.insideIncrement();
bestIncOutside = localLoss.outsideIncrement();
conditions.add(clause);
}
return new CNF(conditions.toArray(new CNF.Clause[conditions.size()]), bestIncInside, bestIncOutside, grid);
}
}
class MultiMethodOptimization extends VecOptimization.Stub {
private final VecOptimization[] learners;
private final FastRandom random;
public MultiMethodOptimization(VecOptimization[] learners, FastRandom random) {
this.learners = learners;
this.random = random;
}
class FuncHolder extends Func.Stub {
Func inside;
FuncHolder(Func inside) {
this.inside = inside;
}
@Override
public double value(Vec x) {
return inside.value(x);
}
@Override
public int dim() {
return inside.dim();
}
}
@Override
public Trans fit(VecDataSet learn, Loss loss) {
return new FuncHolder((Func)learners[random.nextInt(learners.length)].fit(learn,loss));
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy