com.expleague.ml.methods.linearRegressionExperiments.MultipleEbsRidgeRegression Maven / Gradle / Ivy
package com.expleague.ml.methods.linearRegressionExperiments;
import com.expleague.commons.math.vectors.Mx;
import com.expleague.commons.math.vectors.Vec;
import com.expleague.ml.data.set.VecDataSet;
import com.expleague.ml.func.Linear;
import com.expleague.ml.methods.MultipleVecOptimization;
import com.expleague.ml.loss.L2;
import java.util.ArrayList;
import java.util.List;
/**
* Created by noxoomo on 10/06/15.
*/
public class MultipleEbsRidgeRegression extends MultipleVecOptimization.Stub {
@Override
public Linear[] fit(VecDataSet[] learn, L2[] loss) {
if (learn.length != loss.length)
throw new IllegalArgumentException("losses count ≠ ds count");
final boolean[] empty = new boolean[learn.length];
final List datas = new ArrayList<>(loss.length);
final List targets = new ArrayList<>(loss.length);
int featureCount = 0;
Linear zeroWeight = null;
for (int i = 0; i < learn.length; ++i) {
if (loss[i] == null || loss[i].dim() < learn[i].xdim()) {
empty[i] = true;
} else {
final Mx data = learn[i].data();
final Vec target = loss[i].target();
featureCount = data.columns();
datas.add(data);
targets.add(target);
}
}
final EmpericalBayesRidgeRegression regression = new EmpericalBayesRidgeRegression(
datas.toArray(new Mx[datas.size()]),
targets.toArray(new Vec[datas.size()]));
Linear[] result = regression.fit();
Linear[] totalResult = new Linear[empty.length];
int ind = 0;
for (int i = 0; i < empty.length; ++i) {
if (empty[i]) {
if (zeroWeight == null) {
zeroWeight = new Linear(new double[featureCount]);
}
totalResult[i] = zeroWeight;
} else {
totalResult[i] = result[ind++];
}
}
return totalResult;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy