com.expleague.ml.methods.linearRegressionExperiments.WeakLeastAngle Maven / Gradle / Ivy
package com.expleague.ml.methods.linearRegressionExperiments;
import com.expleague.commons.math.Func;
import com.expleague.commons.math.MathTools;
import com.expleague.commons.math.vectors.Mx;
import com.expleague.commons.math.vectors.Vec;
import com.expleague.ml.data.set.VecDataSet;
import com.expleague.ml.loss.L2;
import com.expleague.ml.methods.VecOptimization;
import com.expleague.commons.math.stat.StatTools;
import com.expleague.commons.util.ArrayTools;
import static com.expleague.commons.math.MathTools.sqr;
/**
* Created by noxoomo on 10/06/15.
*/
public class WeakLeastAngle implements VecOptimization {
public static class WeakLinear extends Func.Stub {
final int dim;
final int condition;
final double value;
public WeakLinear(int dim, int condition, double value) {
this.dim = dim;
this.condition = condition;
this.value = value;
}
@Override
public double value(Vec x) {
return x.get(condition) * value;
}
@Override
public int dim() {
return dim;
}
}
final private int[] points;
final private int[] features;
public WeakLeastAngle(int[] points, int[] features) {
this.points = points;
this.features = features;
}
public WeakLeastAngle() {
this.points = null;
this.features = null;
}
@Override
public WeakLinear fit(VecDataSet learn, L2 l2) {
final int[] points;
final int[] features;
final Mx data = learn.data();
final Vec target = l2.target();
if (this.points == null) {
points = ArrayTools.sequence(0,data.rows());
features = ArrayTools.sequence(0,data.columns());
} else {
points = this.points;
features = this.features;
}
double variance = StatTools.variance(target);
double bestInc = 0;
double leastAngle = 0;
int bestInd = 0;
final double targetNorm = Math.sqrt(multiply(target, target, points));
for (int i : features) {
final Vec feature = data.col(i);
final double featureNorm =Math.sqrt(multiply(feature,feature,points));
final double dotProd = multiply(feature, target, points);
double angle = dotProd / featureNorm / targetNorm;
if (Math.abs(angle) > leastAngle) {
leastAngle = Math.abs(angle);
bestInd = i;
bestInc = dotProd / featureNorm / featureNorm;
}
}
final WeakLinear result = new WeakLinear(data.columns(), bestInd, bestInc);
if (score(result, data, target,points) < variance) {
return result;
} else {
return new WeakLinear(data.columns(), 0, 0);
}
}
private double score(WeakLinear model, Mx data, Vec target, int[] points) {
double score = 0;
for (int i : points) {
final double diff = MathTools.sqr(model.value(data.row(i)) - target.get(i));
score += diff;
}
return score / (data.rows() - 2);
}
private double multiply(Vec left, Vec right, int[] points) {
double res = 0;
for (int i : points) {
res += left.get(i) * right.get(i);
}
return res;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy