com.expleague.ml.methods.multilabel.MultiLabelSubsetsMulticlass Maven / Gradle / Ivy
package com.expleague.ml.methods.multilabel;
import com.expleague.commons.math.vectors.impl.vectors.ArrayVec;
import com.expleague.commons.func.WeakListenerHolder;
import com.expleague.commons.func.impl.WeakListenerHolderImpl;
import com.expleague.commons.math.vectors.Mx;
import com.expleague.commons.math.vectors.MxBuilder;
import com.expleague.commons.math.vectors.Vec;
import com.expleague.commons.math.vectors.VecTools;
import com.expleague.commons.math.vectors.impl.mx.MxByRowsBuilder;
import com.expleague.commons.math.vectors.impl.vectors.VecBuilder;
import com.expleague.commons.math.Trans;
import com.expleague.ml.data.set.VecDataSet;
import com.expleague.ml.data.set.impl.VecDataSetImpl;
import com.expleague.ml.data.tools.MCTools;
import com.expleague.ml.func.Ensemble;
import com.expleague.ml.func.FuncJoin;
import com.expleague.ml.loss.blockwise.BlockwiseMLLLogit;
import com.expleague.ml.loss.multilabel.ClassicMultiLabelLoss;
import com.expleague.ml.methods.VecOptimization;
import com.expleague.ml.models.MultiClassModel;
import com.expleague.ml.models.multiclass.MCModel;
import com.expleague.ml.models.multilabel.MultiLabelSubsetsModel;
import gnu.trove.list.TIntList;
import gnu.trove.map.TIntObjectMap;
import gnu.trove.map.TObjectIntMap;
import gnu.trove.map.hash.TObjectIntHashMap;
import gnu.trove.procedure.TObjectIntProcedure;
import java.lang.ref.WeakReference;
import java.util.ArrayList;
import java.util.List;
import java.util.function.Consumer;
/**
* User: qdeee
* Date: 23.03.15
*/
public class MultiLabelSubsetsMulticlass extends WeakListenerHolderImpl implements VecOptimization {
private final VecOptimization weak;
private final int minExamplesCount;
public MultiLabelSubsetsMulticlass(final VecOptimization weak, final int minExamplesCount) {
this.weak = weak;
this.minExamplesCount = minExamplesCount;
}
@Override
public MultiLabelSubsetsModel fit(final VecDataSet learn, final ClassicMultiLabelLoss multiLabelLoss) {
final Mx targets = multiLabelLoss.getTargets();
//build two mappings: uniq_labels(vec) -> classNum(int) and classNum(int) -> uniq_labels(vec)
final TObjectIntMap vec2class = new TObjectIntHashMap<>();
final Vec newTarget = new ArrayVec(targets.rows());
for (int i = 0; i < targets.rows(); i++) {
final Vec row = targets.row(i);
final int classNumber = vec2class.adjustOrPutValue(row, 0, vec2class.size());
newTarget.set(i, classNumber);
}
final Vec[] class2vec = new Vec[vec2class.size()];
vec2class.forEachEntry(new TObjectIntProcedure() {
@Override
public boolean execute(final Vec labels, final int classNumber) {
class2vec[classNumber] = labels;
return true;
}
});
//filter rare labels combinations
final VecBuilder targetBuilder = new VecBuilder();
final MxBuilder mxBuilder = new MxByRowsBuilder();
final List filteredClass2Vec = new ArrayList<>();
final TIntObjectMap classesIdxs = MCTools.splitClassesIdxs(VecTools.toIntSeq(newTarget));
for (int clazz = 0, normalizedClass = 0; clazz < classesIdxs.size(); clazz++) {
final TIntList indexes = classesIdxs.get(clazz);
if (indexes.size() > minExamplesCount) {
for (int i = 0; i < indexes.size(); i++) {
targetBuilder.append(normalizedClass);
mxBuilder.add(learn.at(i));
}
filteredClass2Vec.add(class2vec[clazz]);
normalizedClass++;
}
}
//fit model
final VecDataSet filteredDs = new VecDataSetImpl(mxBuilder.build(), learn);
final BlockwiseMLLLogit mllLogit = new BlockwiseMLLLogit(targetBuilder.build(), learn);
//dirty hack for proxy listener
List tmp = new ArrayList<>();
final Vec[] filteredClass2VecArr = filteredClass2Vec.toArray(new Vec[filteredClass2Vec.size()]);
if (weak instanceof WeakListenerHolder) {
for (final WeakReference> listener : listeners) {
final Consumer super com.expleague.ml.models.multilabel.MultiLabelSubsetsModel> multiLabelAction = listener.get();
final WeakListenerHolder weakListenerHolder = (WeakListenerHolder) weak;
final Consumer weakAction = ensemble -> {
final FuncJoin join = MCTools.joinBoostingResult(ensemble);
multiLabelAction.accept(new MultiLabelSubsetsModel(new MultiClassModel(join), filteredClass2VecArr));
};
tmp.add(weakAction);
weakListenerHolder.addListener(weakAction);
}
}
final Trans fitted = weak.fit(filteredDs, mllLogit);
return new MultiLabelSubsetsModel(createMCModel(fitted), filteredClass2VecArr);
}
private static MCModel createMCModel(final Trans fitted) {
if (fitted instanceof Ensemble && ((Ensemble) fitted).last() instanceof FuncJoin) {
final FuncJoin funcJoin = MCTools.joinBoostingResult((Ensemble) fitted);
return new MultiClassModel(funcJoin);
} else if (fitted instanceof MCModel) {
return (MCModel) fitted;
} else {
throw new IllegalStateException("Can't convert fitted model to MCModel");
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy