com.expleague.ml.methods.wrappers.MultiMethodOptimization Maven / Gradle / Ivy
package com.expleague.ml.methods.wrappers;
import com.expleague.commons.math.vectors.Vec;
import com.expleague.commons.random.FastRandom;
import com.expleague.commons.math.Func;
import com.expleague.commons.math.Trans;
import com.expleague.ml.data.set.VecDataSet;
import com.expleague.ml.loss.StatBasedLoss;
import com.expleague.ml.methods.VecOptimization;
public class MultiMethodOptimization extends VecOptimization.Stub {
private final VecOptimization[] learners;
private final FastRandom random;
public MultiMethodOptimization(VecOptimization[] learners, FastRandom random) {
this.learners = learners;
this.random = random;
}
class FuncHolder extends Func.Stub {
Func inside;
FuncHolder(Func inside) {
this.inside = inside;
}
@Override
public double value(Vec x) {
return inside.value(x);
}
@Override
public int dim() {
return inside.dim();
}
}
@Override
public Trans fit(VecDataSet learn, Loss loss) {
return new FuncHolder((Func)learners[random.nextInt(learners.length)].fit(learn,loss));
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy