com.expleague.ml.models.gpf.weblogmodel.WebLogV1ClickProbabilityModel Maven / Gradle / Ivy
package com.expleague.ml.models.gpf.weblogmodel;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.util.List;
import com.expleague.ml.models.gpf.ClickProbabilityModel;
import com.expleague.commons.math.vectors.impl.mx.VecBasedMx;
import com.expleague.ml.models.gpf.Session;
import org.apache.commons.lang3.NotImplementedException;
/**
* Created by irlab on 03.10.2014.
*/
public class WebLogV1ClickProbabilityModel implements ClickProbabilityModel {
private final VecBasedMx clickProbability = new VecBasedMx(BlockV1.ResultType.values().length, BlockV1.ResultGrade.values().length);
@Override
public void trainClickProbability(final List> dataset) {
final VecBasedMx shows = new VecBasedMx(BlockV1.ResultType.values().length, BlockV1.ResultGrade.values().length);
final VecBasedMx clicks = new VecBasedMx(BlockV1.ResultType.values().length, BlockV1.ResultGrade.values().length);
for (final Session ses: dataset) {
final BlockV1 block1 = ses.getBlock(Session.R0_INDEX);
shows.adjust(block1.resultType.ordinal(), block1.resultGrade.ordinal(), 1);
if (ses.hasClickOn(Session.R0_INDEX))
clicks.adjust(block1.resultType.ordinal(), block1.resultGrade.ordinal(), 1);
}
final double[] shows_result_type = new double[BlockV1.ResultType.values().length];
final double[] clicks_result_type = new double[BlockV1.ResultType.values().length];
double shows_all = 0;
double clicks_all = 0;
for (int i = 0; i < BlockV1.ResultType.values().length; i++) {
for (int j = 0; j < BlockV1.ResultGrade.values().length; j++) {
shows_result_type[i] += shows.get(i, j);
clicks_result_type[i] += clicks.get(i, j);
}
shows_all += shows_result_type[i];
clicks_all += clicks_result_type[i];
}
final double ctr_all = clicks_all / shows_all;
for (int i = 0; i < BlockV1.ResultType.values().length; i++) {
final double prob_click_result_type = (clicks_result_type[i] + 10 * ctr_all) / (shows_result_type[i] + 10);
for (int j = 0; j < BlockV1.ResultGrade.values().length; j++) {
final double prob = (clicks.get(i, j) + 10 * prob_click_result_type) / (shows.get(i, j) + 10);
clickProbability.set(i, j, prob);
}
}
}
@Override
public double getClickGivenViewProbability(final BlockV1 b) {
switch (b.blockType) {
case RESULT:
return clickProbability.get(b.resultType.ordinal(), b.resultGrade.ordinal());
case Q:
return 1. - 1e-6; // always observed
case S:
return 0; // never observed
case E:
return 1. - 1e-6; // always observed
}
throw new IllegalStateException("unknown ResultType: " + b);
}
@Override
public void save(final OutputStream os) throws IOException {
throw new NotImplementedException("not implemented");
}
@Override
public void load(final InputStream is) throws IOException {
throw new NotImplementedException("not implemented");
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy