com.expleague.ml.models.hmm.HiddenMarkovModel Maven / Gradle / Ivy
package com.expleague.ml.models.hmm;
import com.expleague.commons.math.vectors.*;
import com.expleague.commons.math.vectors.impl.vectors.ArrayVec;
import com.expleague.commons.math.vectors.impl.mx.VecBasedMx;
import com.expleague.commons.seq.Seq;
import com.expleague.commons.seq.regexp.Alphabet;
import org.jetbrains.annotations.NotNull;
import java.util.function.Function;
import static java.lang.Math.exp;
public class HiddenMarkovModel implements Function,Vec> {
private final Alphabet alpha;
private final int statesCount;
private final Vec betta;
private final Vec Pi;
private final Mx A;
private final Mx inverseA;
private final Mx B;
public HiddenMarkovModel(Alphabet alpha, int states, Vec betta) {
this.betta = betta;
this.alpha = alpha;
statesCount = states;
this.Pi = betta.sub(0, states);
this.A = new VecBasedMx(states, betta.sub(states, states * states));
this.B = new VecBasedMx(states, betta.sub((states + 1) * states, states * alpha.size()));
this.inverseA = MxTools.transpose(A);
}
@Override
public Vec apply(Seq argument) {
return new SingleValueVec(value(argument));
}
public double value(Seq x) {
final Mx distribs = forward(x);
VecTools.scale(distribs, backward(x));
double ll = 0;
for (int t = 0; t < x.length(); t++) {
final Vec states = distribs.row(t);
VecTools.normalizeL1(states);
ll += Math.log(VecTools.multiply(B.row(alpha.index(x, t)), states));
}
return exp(ll/x.length());
}
@NotNull
public Mx forward(Seq x) {
final Mx forward = new VecBasedMx(statesCount, new ArrayVec(statesCount * x.length()));
{ // forward
Vec prev = forward.row(0);
VecTools.assign(prev, Pi);
VecTools.scale(prev, B.row(alpha.index(x, 0)));
VecTools.normalizeL1(prev);
for (int i = 1; i < x.length(); i++) {
final Vec next = forward.row(i);
MxTools.multiplyTo(A, prev, next);
VecTools.scale(next, B.row(alpha.index(x, i)));
VecTools.normalizeL1(next);
prev = next;
}
}
return forward;
}
@NotNull
public Mx backward(Seq x) {
final Mx backward = new VecBasedMx(statesCount, new ArrayVec(statesCount * x.length()));
{ // backward
Vec prev = new ArrayVec(statesCount);
VecTools.fill(prev, 1. / statesCount);
for (int i = x.length() - 1; i >= 0; i--) {
final Vec next = backward.row(i);
final int index = alpha.index(x, i);
MxTools.multiplyTo(inverseA, prev, next);
VecTools.scale(next, B.row(index));
VecTools.normalizeL1(next);
prev = next;
}
}
return backward;
}
public Vec betta() {
return betta;
}
public int states() {
return statesCount;
}
public Alphabet alpha() {
return alpha;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy