com.expleague.ml.optimization.PDQuadraticFunction Maven / Gradle / Ivy
package com.expleague.ml.optimization;
import com.expleague.commons.math.vectors.Mx;
import com.expleague.commons.math.vectors.MxTools;
import com.expleague.commons.math.vectors.Vec;
import com.expleague.commons.math.vectors.VecTools;
import com.expleague.commons.math.vectors.impl.vectors.ArrayVec;
import com.expleague.commons.math.vectors.impl.mx.VecBasedMx;
/**
* User: qde
* Date: 24.04.13
* Time: 19:03
* Description: positive-definite quadratic function
*/
public class PDQuadraticFunction extends FuncConvex.Stub {
private final Mx mxA;
private final Vec w;
private final double w0;
private final double m;
private final double l;
public PDQuadraticFunction(final Mx mxA, final Vec w, final double w0) {
final double[] params = getConvAndLipConstants(mxA, w);
this.mxA = mxA;
this.w = w;
this.w0 = w0;
this.m = params[0];
this.l = params[1];
}
// result[0] = m (convex param),
// result[1] = l (lipshitz const);
private static double[] getConvAndLipConstants(final Mx mxA, final Vec w) {
final Mx q = new VecBasedMx(mxA.rows(), mxA.columns());
final Mx sigma = new VecBasedMx(mxA.rows(), mxA.columns());
MxTools.eigenDecomposition(mxA, sigma, q);
double minEigenValue = sigma.get(0, 0);
double maxEigenValue = sigma.get(0, 0);
for (int i = 1; i < sigma.rows(); i++) {
if (sigma.get(i, i) < minEigenValue)
minEigenValue = sigma.get(i, i);
if (sigma.get(i, i) > maxEigenValue)
maxEigenValue = sigma.get(i, i);
}
return new double[]{minEigenValue, maxEigenValue};
}
@Override
public int dim() {
return w.dim();
}
@Override
public double value(final Vec x) {
return VecTools.multiply(MxTools.multiply(mxA, x), x) + VecTools.multiply(w, x) + w0;
}
public double getQuadrPartValue(final Vec x) {
return VecTools.multiply(MxTools.multiply(mxA, x), x);
}
@Override
public Vec gradient(final Vec x) {
return VecTools.append(MxTools.multiply(mxA, x), w);
}
@Override
public double getGradLipParam() {
return l;
}
@Override
public double getGlobalConvexParam() {
return m;
}
public Vec getExactExtremum() {
final Vec b = VecTools.copy(w);
VecTools.scale(b, -1.0);
final Mx l = MxTools.choleskyDecomposition(mxA);
final Mx inverse = MxTools.inverseLTriangle(l);
final Vec x = MxTools.multiply(MxTools.multiply(MxTools.transpose(inverse), inverse), b);
//stupid cast (VecBasedMx -> ArrayVec) for solution out
final Vec result = new ArrayVec(b.dim());
VecTools.assign(result, x);
return result;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy