All Downloads are FREE. Search and download functionalities are using the official Maven repository.
Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
com.expleague.ml.methods.greedyRegion.GreedyTDBumpyRegion Maven / Gradle / Ivy
package com.expleague.ml.methods.greedyRegion;
import com.expleague.commons.func.AdditiveStatistics;
import com.expleague.commons.math.MathTools;
import com.expleague.commons.math.vectors.Mx;
import com.expleague.commons.math.vectors.MxTools;
import com.expleague.commons.math.vectors.Vec;
import com.expleague.commons.math.vectors.impl.mx.VecBasedMx;
import com.expleague.commons.math.vectors.impl.vectors.ArrayVec;
import com.expleague.commons.util.ArrayTools;
import com.expleague.ml.BFGrid;
import com.expleague.ml.Binarize;
import com.expleague.ml.data.impl.BinarizedDataSet;
import com.expleague.ml.data.set.VecDataSet;
import com.expleague.ml.impl.BinaryFeatureImpl;
import com.expleague.ml.loss.StatBasedLoss;
import com.expleague.ml.loss.WeightedLoss;
import com.expleague.ml.methods.VecOptimization;
import com.expleague.ml.methods.trees.BFOptimizationSubset;
import com.expleague.ml.models.BumpyRegion;
import gnu.trove.list.array.TDoubleArrayList;
import java.util.ArrayList;
import java.util.List;
/**
* User: noxoomo
*/
public class GreedyTDBumpyRegion extends VecOptimization.Stub {
protected final BFGrid grid;
final double lambda;
public GreedyTDBumpyRegion(final BFGrid grid, double lambda) {
this.grid = grid;
this.lambda = lambda;
}
class BasisRegression {
final TDoubleArrayList means = new TDoubleArrayList();
final TDoubleArrayList weights = new TDoubleArrayList();
final TDoubleArrayList sums = new TDoubleArrayList();
final TDoubleArrayList sd = new TDoubleArrayList();
final ArrayList correlations = new ArrayList<>();
final TDoubleArrayList targetCorrelations = new TDoubleArrayList();
final TDoubleArrayList prior = new TDoubleArrayList();
final AdditiveStatistics targetStat;
final double bias;
final double targetSd;
final Loss loss;
public BasisRegression(Loss loss, AdditiveStatistics targetStat) {
this.loss = loss;
this.targetStat = targetStat;
final double w = AdditiveStatisticsExtractors.weight(targetStat);
final double sum = AdditiveStatisticsExtractors.sum(targetStat);
final double sum2 = AdditiveStatisticsExtractors.sum2(targetStat);
this.bias = sum / w;
this.targetSd = Math.sqrt(sum2 / w - MathTools.sqr(sum / w));
}
double score(final double sum, final double weight) {
final double factorBias = weight / AdditiveStatisticsExtractors.weight(targetStat);
final double factorSd = Math.sqrt(factorBias * (1 - factorBias));
if (weight < 5 || weight > (AdditiveStatisticsExtractors.weight(targetStat) - 5)) {
return Double.POSITIVE_INFINITY;
}
final int m = means.size();
final Mx cor = new VecBasedMx(m + 1, m + 1);
final Vec targetCor = new ArrayVec(m + 1);
for (int i = 0; i < m; ++i) {
cor.set(i, i, 1.0 + prior.get(i));
targetCor.set(i, targetCorrelations.get(i));
for (int j = 0; j < i; ++j) {
final double rho = correlations.get(i).get(j);
cor.set(i, j, rho);
cor.set(j, i, rho);
}
}
cor.set(m, m, 1.0 + calcRegularization(weight));
{
double scale = 1.0 / (targetSd * factorSd) / AdditiveStatisticsExtractors.weight(targetStat);
targetCor.set(m, (sum - factorBias * AdditiveStatisticsExtractors.sum(targetStat) - bias * weight + AdditiveStatisticsExtractors.weight(targetStat) * bias * factorBias) * scale);
}
for (int i = 0; i < m; ++i) {
final double scale = 1.0 / sd.get(i) / factorSd / AdditiveStatisticsExtractors.weight(targetStat);
final double fMean = means.get(i);
final double fWeight = weights.get(i);
final double rho = scale * (weight - fWeight * factorBias - weight * fMean + AdditiveStatisticsExtractors.weight(targetStat) * factorBias * fMean);
cor.set(i, m, rho);
cor.set(m, i, rho);
}
final Mx inv = MxTools.inverse(cor);
Vec betas = new ArrayVec(m + 1);
betas.set(0, bias * targetSd);
Vec standardizedWeights = MxTools.multiply(inv, targetCor);
for (int i = 0; i < m; ++i) {
betas.adjust(0, -standardizedWeights.get(i) * means.get(i) * targetSd / sd.get(i));
betas.set(i + 1, standardizedWeights.get(i) * targetSd / sd.get(i));
}
double c = 0;
for (int i=0; i < betas.dim();++i) {
c += betas.get(i);
}
double score = c * c * weight - 2 * c * sum;
double w = weight;
double s = sum;
for (int i = sums.size(); i >0; --i) {
c -= betas.get(i);
w = weights.get(i-1) - w;
s = sums.get(i-1) - s;
score += c * c * w - 2 * c * s;
w = weights.get(i-1);
s = sums.get(i-1);
}
return score;// * (1 + 2 * FastMath.log(weight + 1));// + Math.log(2) * sums.size();
}
void add(AdditiveStatistics inside) {
final int m = means.size();
final double factorSum = AdditiveStatisticsExtractors.sum(inside);
final double factorWeight = AdditiveStatisticsExtractors.weight(inside);
prior.add(calcRegularization(factorWeight));
sums.add(AdditiveStatisticsExtractors.sum(inside));
final double factorBias = factorWeight / AdditiveStatisticsExtractors.weight(targetStat);
final double factorSd = Math.sqrt(factorBias * (1 - factorBias));
means.add(factorBias);
weights.add(factorWeight);
sd.add(factorSd);
{
double scale = 1.0 / (targetSd * factorSd) / AdditiveStatisticsExtractors.weight(targetStat);
targetCorrelations.add((factorSum - factorBias * AdditiveStatisticsExtractors.sum(targetStat) - bias * factorWeight + AdditiveStatisticsExtractors.weight(targetStat) * bias * factorBias) * scale);
}
TDoubleArrayList newCor = new TDoubleArrayList();
for (int i = 0; i < m; ++i) {
final double scale = 1.0 / sd.get(i) / factorSd / AdditiveStatisticsExtractors.weight(targetStat);
final double fMean = means.get(i);
final double fWeight = weights.get(i);
final double rho = scale * (factorWeight - fWeight * factorBias - factorWeight * fMean + AdditiveStatisticsExtractors.weight(targetStat) * factorBias * fMean);
newCor.add(rho);
}
correlations.add(newCor);
}
double calcRegularization(double weight) {
final int k = correlations.size() + 1;
double totalWeight = AdditiveStatisticsExtractors.weight(targetStat);
double p = (weight + 0.5) / (totalWeight + 1);
double entropy = -(p * Math.log(p) + (1 - p) * Math.log(1 - p));
return lambda;// * Math.log(k);// / entropy;
}
Vec estimateWeights() {
int m = means.size();
Mx cor = new VecBasedMx(m, m);
Vec targetCor = new ArrayVec(m);
for (int i = 0; i < m; ++i) {
cor.set(i, i, 1.0 + prior.get(i));
targetCor.set(i, targetCorrelations.get(i));
for (int j = 0; j < i; ++j) {
final double rho = correlations.get(i).get(j);
cor.set(i, j, rho);
cor.set(j, i, rho);
}
}
Vec weights = new ArrayVec(m + 1);
weights.set(0, bias * targetSd);
if (m > 0) {
Mx inv = MxTools.inverse(cor);
Vec standardizedWeights = MxTools.multiply(inv, targetCor);
for (int i = 0; i < m; ++i) {
weights.adjust(0, -standardizedWeights.get(i) * means.get(i) * targetSd / sd.get(i));
weights.set(i + 1, standardizedWeights.get(i) * targetSd / sd.get(i));
}
}
return weights;
}
}
@Override
public BumpyRegion fit(final VecDataSet learn, final Loss loss) {
final List conditions = new ArrayList<>(100);
final boolean[] usedBF = new boolean[grid.size()];
final BinarizedDataSet bds = learn.cache().cache(Binarize.class, VecDataSet.class).binarize(grid);
double currentScore = 1.0;
final BFWeakConditionsOptimizationRegion current =
new BFWeakConditionsOptimizationRegion(bds, loss, ((WeightedLoss) loss).points(), new BinaryFeatureImpl[0], new boolean[0], 0);
final double[] scores = new double[grid.size()];
final AdditiveStatistics[] stats = new AdditiveStatistics[grid.size()];
BasisRegression estimator = new BasisRegression(loss, ((AdditiveStatistics) loss.statsFactory().create()).append(current.total()));
while (conditions.size() < 6) {
current.visitAllSplits((bf, left, right) -> {
if (usedBF[bf.index()]) {
scores[bf.index()] = Double.POSITIVE_INFINITY;
} else {
final AdditiveStatistics in = (AdditiveStatistics) loss.statsFactory().create();
in.append(right);
stats[bf.index()] = in;
scores[bf.index()] = estimator.score(AdditiveStatisticsExtractors.sum(in), AdditiveStatisticsExtractors.weight(in));
}
});
final int bestSplit = ArrayTools.min(scores);
if (bestSplit < 0 || !Double.isFinite(scores[bestSplit]))
break;
if ((scores[bestSplit] + 1e-9 >= currentScore))
break;
final BFGrid.Feature bestSplitBF = grid.bf(bestSplit);
final BFOptimizationSubset outRegion = current.split(bestSplitBF, true);
if (outRegion == null) {
break;
}
conditions.add(bestSplitBF);
usedBF[bestSplitBF.index()] = true;
currentScore = scores[bestSplit];
estimator.add(stats[bestSplitBF.index()]);
}
return new BumpyRegion(grid, conditions.toArray(new BFGrid.Feature[conditions.size()]), estimator.estimateWeights());
}
}