com.expleague.ml.methods.greedyRegion.cherry.OutLoss3 Maven / Gradle / Ivy
package com.expleague.ml.methods.greedyRegion.cherry;
import com.expleague.ml.data.cherry.CherryLoss;
import com.expleague.ml.data.cherry.CherryPointsHolder;
import com.expleague.ml.BFGrid;
import com.expleague.ml.impl.BFRowImpl;
import com.expleague.ml.loss.StatBasedLoss;
import com.expleague.ml.methods.greedyRegion.AdditiveStatisticsExtractors;
import com.expleague.ml.methods.greedyRegion.GreedyTDWeakRegionMTA;
import com.expleague.commons.func.AdditiveStatistics;
import gnu.trove.set.hash.TIntHashSet;
public class OutLoss3> extends CherryLoss {
private Subset subset;
private Loss loss;
private int complexity = 1;
private int minBinSize = 50;
private TIntHashSet used = new TIntHashSet();
OutLoss3(Subset subset, Loss loss) {
this.subset = subset;
this.loss = loss;
}
@Override
public double score(BFGrid.Row feature, int start, int end, AdditiveStatistics added, AdditiveStatistics out) {
if (start == 0 && end == feature.size())
return Double.NEGATIVE_INFINITY;
int newsize = used.contains(feature.findex()) ? used.size() : used.size()+1;
if (newsize > 7)
return Double.NEGATIVE_INFINITY;
AdditiveStatistics inside = subset.inside();
AdditiveStatistics total = subset.inside().append(added);
final double R1 = -GreedyTDWeakRegionMTA.sum(total) * GreedyTDWeakRegionMTA.sum(total) / AdditiveStatisticsExtractors.weight(total);
total.append(out);
final double R2 = Math.min(AdditiveStatisticsExtractors.weight(inside) > 1 ? -GreedyTDWeakRegionMTA.sum(inside) * GreedyTDWeakRegionMTA.sum(inside) / AdditiveStatisticsExtractors.weight(inside) : 0,-GreedyTDWeakRegionMTA.sum(total) * GreedyTDWeakRegionMTA.sum(total) / AdditiveStatisticsExtractors.weight(total)) ;
final int borders = borders(feature, start, end);
final double score = (R2-R1) / (borders);
return score >= 0 ? score : -1000000;//score(total, out, complexity + borders);
}
private int borders(BFGrid.Row feature, int start, int end) {
return start != 0 && end != feature.size() ? 4 : 1;
}
private double score(AdditiveStatistics inside, AdditiveStatistics outside, int complexity) {
final double wIn = AdditiveStatisticsExtractors.weight(inside);
if (used.size() > 6)
return Double.NEGATIVE_INFINITY;
if (wIn > 0 && wIn < minBinSize)
return -1000000;
final double wOut = AdditiveStatisticsExtractors.weight(outside);
if (wOut > 0 && wOut < minBinSize)
return -1000000;
double s = GreedyTDWeakRegionMTA.sum(inside) + GreedyTDWeakRegionMTA.sum(outside);
double w = wIn + wOut;
final double score = AdditiveStatisticsExtractors.weight(inside) > 0 ? GreedyTDWeakRegionMTA.sum(inside) * GreedyTDWeakRegionMTA.sum(inside) / AdditiveStatisticsExtractors.weight(inside) : 0;
return score;
}
@Override
public double score() {
return score(subset.inside(), subset.outside(), complexity);
}
@Override
public double insideIncrement() {
return loss.bestIncrement(subset.inside());
}
@Override
public void endClause() {
subset.endClause();
complexity ++;
}
public void addCondition(BFRowImpl feature, int start, int end) {
subset().addCondition(feature, start, end);
complexity += borders(feature, start, end);
used.add(feature.origFIndex);
complexity ++;
}
@Override
public CherryPointsHolder subset() {
return subset;
}
}