All Downloads are FREE. Search and download functionalities are using the official Maven repository.
Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
com.expleague.ml.models.nn.ConvNet Maven / Gradle / Ivy
package com.expleague.ml.models.nn;
import com.expleague.commons.math.TransC1;
import com.expleague.commons.math.vectors.Vec;
import com.expleague.commons.math.vectors.VecTools;
import com.expleague.commons.math.vectors.impl.vectors.ArrayVec;
import com.expleague.ml.func.generic.Sum;
import com.expleague.ml.models.nn.layers.*;
import java.io.*;
public class ConvNet extends TransC1.Stub implements NeuralNetwork {
private final NetworkBuilder.Network network;
private final NeuralSpider neuralSpider = new NeuralSpider<>();
private final Vec weights;
private TransC1 target = new Sum();
public ConvNet(NetworkBuilder.Network network, Vec weights) {
this.network = network;
this.weights = weights;
}
@Override
public Vec apply(Vec input) {
return neuralSpider.compute(network, input, weights);
}
public Vec apply(Vec argument, Vec weights) {
return neuralSpider.compute(network, argument, weights);
}
public Vec gradientTo(Vec x, Vec weights, TransC1 target, Vec to) {
neuralSpider.parametersGradient(network, x, target, weights, to);
return to;
}
public Vec gradientTo(Vec x, TransC1 target, Vec to) {
return gradientTo(x, weights, target, to);
}
@Override
public Vec gradientTo(Vec x, Vec to) {
neuralSpider.parametersGradient(network, x, target, weights, to);
return to;
}
@Override
public Vec gradientRowTo(Vec x, Vec to, int index) {
return gradientTo(x, to);
}
public void save(String path) {
try (DataOutputStream dos = new DataOutputStream(new FileOutputStream(path))) {
for (double v : weights.toArray()) {
dos.writeDouble(v);
}
}
catch (IOException e) {
throw new RuntimeException(e);
}
}
@Override
public String toString() {
return network.toString();
}
public Vec weights() {
return weights;
}
@Override
public int xdim() {
if (network.input() instanceof ConstSizeInput
|| network.input() instanceof ConstSizeInput3D){
return network.input().getLayer().xdim();
}
throw new UnsupportedOperationException();
}
@Override
public int ydim() {
return network.ydim();
}
public int wdim() {
return network.wdim();
}
void setWeights(Vec weights) {
VecTools.assign(this.weights, weights);
}
public void setTarget(TransC1 target) {
this.target = target;
}
public static class InputBuilder implements InputLayerBuilder {
private Vec input;
private int yStart;
private ConvInput layer;
@Override
public void setInput(Vec input) {
this.input = input;
}
@Override
public int ydim(Vec input) {
return input.dim();
}
@Override
public LayerBuilder setPrevBuilder(LayerBuilder layer) {
return this;
}
@Override
public Layer getLayer() {
return layer;
}
@Override
public LayerBuilder yStart(int yStart) {
this.yStart = yStart;
return this;
}
@Override
public LayerBuilder wStart(int wStart) {
return this;
}
@Override
public InputLayer build() {
/* TODO: instead of checking on null, check for size of dimensions */
if (layer == null) {
layer = new ConvInput();
}
return layer;
}
public class ConvInput implements InputLayer {
private ConvInput() { }
@Override
public void toState(Vec state) {
VecTools.assign(state.sub(0, input.dim()), input);
}
@Override
public int xdim() {
return ydim();
}
@Override
public int ydim() {
return input.dim();
}
@Override
public int yStart() {
return yStart;
}
@Override
public void initWeights(Vec weights) { }
}
}
}