All Downloads are FREE. Search and download functionalities are using the official Maven repository.
Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
com.expleague.ml.models.nn.layers.ConvLayerBuilder Maven / Gradle / Ivy
package com.expleague.ml.models.nn.layers;
import com.expleague.commons.math.AnalyticFunc;
import com.expleague.commons.math.vectors.Vec;
import com.expleague.commons.seq.ArraySeq;
import com.expleague.commons.seq.Seq;
import com.expleague.ml.models.nn.Identity;
import com.expleague.ml.models.nn.NeuralSpider.BackwardNode;
import com.expleague.ml.models.nn.nodes.ConvNode;
import static com.expleague.ml.models.nn.NeuralSpider.ForwardNode;
public class ConvLayerBuilder implements LayerBuilder {
private int kSizeX = 3;
private int kSizeY = 3;
private int strideX = 1;
private int strideY = 1;
private int paddX = 0;
private int paddY = 0;
private int outChannels = 0;
private FillerType fillerType = FillerType.NORMAL;
private LayerBuilder prevBuilder;
private ConvLayer layer;
private int yStart;
private int wStart;
private AnalyticFunc activation = new Identity();
protected ConvLayerBuilder() {}
public static ConvLayerBuilder create() {
return new ConvLayerBuilder();
}
public ConvLayerBuilder ksize(int kSizeX, int kSizeY) {
assert(kSizeX > 0);
assert(kSizeY > 0);
this.kSizeX = kSizeX;
this.kSizeY = kSizeY;
if (paddX != 0 || paddY != 0) {
paddX = (kSizeX - 1) / 2;
paddY = (kSizeY - 1) / 2;
}
return this;
}
public ConvLayerBuilder stride(int strideX, int strideY) {
assert(strideX > 0);
assert(strideY > 0);
this.strideX = strideX;
this.strideY = strideY;
return this;
}
public ConvLayerBuilder channels(int channels) {
this.outChannels = channels;
return this;
}
public ConvLayerBuilder samePadd() {
paddX = (kSizeX - 1) / 2;
paddY = (kSizeY - 1) / 2;
return this;
}
public ConvLayerBuilder padd(int paddX, int paddY) {
this.paddX = paddX;
this.paddY = paddY;
return this;
}
@Override
public ConvLayer getLayer() {
return layer;
}
@Override
public LayerBuilder setPrevBuilder(LayerBuilder prevBuilder) {
if (this.prevBuilder != null) {
throw new IllegalStateException("Conv layer can have only one previous layer");
}
this.prevBuilder = prevBuilder;
return this;
}
@Override
public LayerBuilder yStart(int yStart) {
this.yStart = yStart;
return this;
}
@Override
public LayerBuilder wStart(int wStart) {
this.wStart = wStart;
return this;
}
public ConvLayerBuilder weightFill(FillerType fillerType) {
this.fillerType = fillerType;
return this;
}
@Override
public Layer3D build() {
if (prevBuilder.getLayer() == null) {
throw new IllegalStateException("Graph is not acyclic");
}
if (layer != null) {
return layer;
}
if (outChannels == 0) {
throw new IllegalStateException("The number of output channels is not provided");
}
layer = new ConvLayer((Layer3D) prevBuilder.getLayer());
return layer;
}
public ConvLayerBuilder activation(Class extends AnalyticFunc> actClass) {
try {
activation = actClass.newInstance();
}
catch (InstantiationException | IllegalAccessException e) {
throw new RuntimeException(e);
}
return this;
}
public class ConvLayer implements Layer3D {
protected final Layer3D input;
private final Filler filler;
private final ConvNode node;
protected ConvLayer(Layer3D input) {
this.input = input;
filler = FillerType.getInstance(fillerType, this);
node = new ConvNode(
yStart, wStart, input.yStart(),
input.width(), input.height(), width(), height(),
kSizeX, kSizeY, strideX, strideY, paddX, paddY,
input.channels(), outChannels, activation);
}
public void initWeights(Vec weights) {
filler.apply(weights.sub(wStart, wdim()));
}
@Override
public int height() {
return (input.height() + 2 * paddX - kSizeX) / strideX + 1;
}
@Override
public int width() {
return (input.width() + 2 * paddY - kSizeY) / strideY + 1;
}
@Override
public int channels() {
return outChannels;
}
@Override
public int xdim() {
return input.channels() * input.width() * input.height();
}
@Override
public int ydim() {
return width() * height() * outChannels;
}
@Override
public int wdim() {
return (input.channels() * kSizeX * kSizeY + 1) * outChannels;
}
@Override
public int yStart() {
return yStart;
}
public int kSizeX() {
return kSizeX;
}
public int kSizeY() {
return kSizeY;
}
public int strideX() {
return strideX;
}
public int strideY() {
return strideY;
}
@Override
public Seq forwardFlow() {
return ArraySeq.iterate(ForwardNode.class, node.forward(), ydim());
}
@Override
public Seq backwardFlow() {
return ArraySeq.iterate(BackwardNode.class, node.backward(), xdim());
}
@Override
public Seq gradientFlow() {
return ArraySeq.iterate(BackwardNode.class, node.gradient(), wdim());
}
@Override
public String toString() {
return "Conv outSize[" + height() + ", " + width() + ", " + channels() + "] " +
"kernel[" + kSizeX + ", " + kSizeY + "] " +
"stride[" + strideX + ", " + strideY + "]";
}
}
}