All Downloads are FREE. Search and download functionalities are using the official Maven repository.

jm.audio.math.RealFloatFFT Maven / Gradle / Ivy

The newest version!
package jm.audio.math;

/**
 * Abstract Class representing FFT's of real, single precision data.
 * Concrete classes are typically named RealFloatFFT_method, implement the
 * FFT using some particular method.
 * 

* The physical layout of the mathematical data d[i] in the array data is as follows: *

 * d[i] = data[i0 + stride*i]
 * 
* The FFT (D[i]) of real data (d[i]) is complex, but restricted by symmetry: *
 * D[n-i] = conj(D[i])
 * 
* It turns out that there are still n `independent' values, so the transformation * can still be carried out in-place. * However, each Real FFT method tends to leave the real and imaginary parts * distributed in the data array in its own unique arrangment. *

* You must consult the documentation for the specific classes implementing * RealFloatFFT for the details. * Note, however, that each class's backtransform and inverse methods understand * thier own unique ordering of the transformed result and can invert it correctly. * * @author Bruce R. Miller [email protected] * @author Contribution of the National Institute of Standards and Technology, * @author not subject to copyright. */ public abstract class RealFloatFFT { int n; /** * Create an FFT for transforming n points of real, single precision data. */ public RealFloatFFT(int n) { if (n <= 0) throw new IllegalArgumentException("The transform length must be >=0 : " + n); this.n = n; } protected void checkData(float data[], int i0, int stride) { if (i0 < 0) throw new IllegalArgumentException("The offset must be >=0 : " + i0); if (stride < 1) throw new IllegalArgumentException("The stride must be >=1 : " + stride); if (i0 + stride * (n - 1) + 1 > data.length) throw new IllegalArgumentException("The data array is too small for " + n + ":" + "i0=" + i0 + " stride=" + stride + " data.length=" + data.length); } /** * Compute the Fast Fourier Transform of data leaving the result in data. */ public void transform(float data[]) { transform(data, 0, 1); } /** * Compute the Fast Fourier Transform of data leaving the result in data. */ public abstract void transform(float data[], int i0, int stride); /** * Return data in wraparound order. * * @see wraparound format */ public float[] toWraparoundOrder(float data[]) { return toWraparoundOrder(data, 0, 1); } /** * Return data in wraparound order. * i0 and stride are used to traverse data; the new array is in * packed (i0=0, stride=1) format. * * @see wraparound format */ public abstract float[] toWraparoundOrder(float data[], int i0, int stride); /** * Compute the (unnomalized) inverse FFT of data, leaving it in place. */ public void backtransform(float data[]) { backtransform(data, 0, 1); } /** * Compute the (unnomalized) inverse FFT of data, leaving it in place. */ public abstract void backtransform(float data[], int i0, int stride); /** * Return the normalization factor. * Multiply the elements of the backtransform'ed data to get the normalized inverse. */ public float normalization() { return 1.0f / ((float) n); } /** * Compute the (nomalized) inverse FFT of data, leaving it in place. */ public void inverse(float data[]) { inverse(data, 0, 1); } /** * Compute the (nomalized) inverse FFT of data, leaving it in place. */ public void inverse(float data[], int i0, int stride) { backtransform(data, i0, stride); /* normalize inverse fft with 1/n */ float norm = normalization(); for (int i = 0; i < n; i++) data[i0 + stride * i] *= norm; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy