All Downloads are FREE. Search and download functionalities are using the official Maven repository.

jm.audio.math.RealFloatFFT Maven / Gradle / Ivy

There is a newer version: 1.6.4.1
Show newest version
package jm.audio.math;
/** Abstract Class representing FFT's of real, single precision data.
  * Concrete classes are typically named RealFloatFFT_method, implement the
  * FFT using some particular method.
  * 

* The physical layout of the mathematical data d[i] in the array data is as follows: *

  *    d[i] = data[i0 + stride*i]
  *
* The FFT (D[i]) of real data (d[i]) is complex, but restricted by symmetry: *
  *    D[n-i] = conj(D[i])
  *
* It turns out that there are still n `independent' values, so the transformation * can still be carried out in-place. * However, each Real FFT method tends to leave the real and imaginary parts * distributed in the data array in its own unique arrangment. *

* You must consult the documentation for the specific classes implementing * RealFloatFFT for the details. * Note, however, that each class's backtransform and inverse methods understand * thier own unique ordering of the transformed result and can invert it correctly. * * @author Bruce R. Miller [email protected] * @author Contribution of the National Institute of Standards and Technology, * @author not subject to copyright. */ public abstract class RealFloatFFT { int n; /** Create an FFT for transforming n points of real, single precision data. */ public RealFloatFFT(int n){ if (n <= 0) throw new IllegalArgumentException("The transform length must be >=0 : "+n); this.n = n; } protected void checkData(float data[], int i0, int stride){ if (i0 < 0) throw new IllegalArgumentException("The offset must be >=0 : "+i0); if (stride < 1) throw new IllegalArgumentException("The stride must be >=1 : "+stride); if (i0+stride*(n-1)+1 > data.length) throw new IllegalArgumentException("The data array is too small for "+n+":"+ "i0="+i0+" stride="+stride+ " data.length="+data.length); } /** Compute the Fast Fourier Transform of data leaving the result in data. */ public void transform (float data[]) { transform (data, 0,1); } /** Compute the Fast Fourier Transform of data leaving the result in data. */ public abstract void transform (float data[], int i0, int stride); /** Return data in wraparound order. * @see wraparound format */ public float[] toWraparoundOrder(float data[]){ return toWraparoundOrder(data,0,1); } /** Return data in wraparound order. * i0 and stride are used to traverse data; the new array is in * packed (i0=0, stride=1) format. * @see wraparound format */ public abstract float[] toWraparoundOrder(float data[], int i0, int stride); /** Compute the (unnomalized) inverse FFT of data, leaving it in place.*/ public void backtransform (float data[]) { backtransform(data,0,1); } /** Compute the (unnomalized) inverse FFT of data, leaving it in place.*/ public abstract void backtransform (float data[], int i0, int stride); /** Return the normalization factor. * Multiply the elements of the backtransform'ed data to get the normalized inverse.*/ public float normalization(){ return 1.0f/((float) n); } /** Compute the (nomalized) inverse FFT of data, leaving it in place.*/ public void inverse(float data[]) { inverse(data,0,1); } /** Compute the (nomalized) inverse FFT of data, leaving it in place.*/ public void inverse (float data[], int i0, int stride) { backtransform(data, i0, stride); /* normalize inverse fft with 1/n */ float norm = normalization(); for (int i = 0; i < n; i++) data[i0+stride*i] *= norm; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy