All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.facebook.hive.orc.$internal.protobuf.CodedOutputStream Maven / Gradle / Ivy

There is a newer version: 0.18.9
Show newest version
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// http://code.google.com/p/protobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

package com.facebook.hive.orc.$internal.protobuf;

import java.io.OutputStream;
import java.io.IOException;
import java.io.UnsupportedEncodingException;
import java.io.InputStream;

/**
 * Encodes and writes protocol message fields.
 *
 * 

This class contains two kinds of methods: methods that write specific * protocol message constructs and field types (e.g. {@link #writeTag} and * {@link #writeInt32}) and methods that write low-level values (e.g. * {@link #writeRawVarint32} and {@link #writeRawBytes}). If you are * writing encoded protocol messages, you should use the former methods, but if * you are writing some other format of your own design, use the latter. * *

This class is totally unsynchronized. * * @author [email protected] Kenton Varda */ public final class CodedOutputStream { private final byte[] buffer; private final int limit; private int position; private final OutputStream output; /** * The buffer size used in {@link #newInstance(OutputStream)}. */ public static final int DEFAULT_BUFFER_SIZE = 4096; /** * Returns the buffer size to efficiently write dataLength bytes to this * CodedOutputStream. Used by AbstractMessageLite. * * @return the buffer size to efficiently write dataLength bytes to this * CodedOutputStream. */ static int computePreferredBufferSize(int dataLength) { if (dataLength > DEFAULT_BUFFER_SIZE) return DEFAULT_BUFFER_SIZE; return dataLength; } private CodedOutputStream(final byte[] buffer, final int offset, final int length) { output = null; this.buffer = buffer; position = offset; limit = offset + length; } private CodedOutputStream(final OutputStream output, final byte[] buffer) { this.output = output; this.buffer = buffer; position = 0; limit = buffer.length; } /** * Create a new {@code CodedOutputStream} wrapping the given * {@code OutputStream}. */ public static CodedOutputStream newInstance(final OutputStream output) { return newInstance(output, DEFAULT_BUFFER_SIZE); } /** * Create a new {@code CodedOutputStream} wrapping the given * {@code OutputStream} with a given buffer size. */ public static CodedOutputStream newInstance(final OutputStream output, final int bufferSize) { return new CodedOutputStream(output, new byte[bufferSize]); } /** * Create a new {@code CodedOutputStream} that writes directly to the given * byte array. If more bytes are written than fit in the array, * {@link OutOfSpaceException} will be thrown. Writing directly to a flat * array is faster than writing to an {@code OutputStream}. See also * {@link ByteString#newCodedBuilder}. */ public static CodedOutputStream newInstance(final byte[] flatArray) { return newInstance(flatArray, 0, flatArray.length); } /** * Create a new {@code CodedOutputStream} that writes directly to the given * byte array slice. If more bytes are written than fit in the slice, * {@link OutOfSpaceException} will be thrown. Writing directly to a flat * array is faster than writing to an {@code OutputStream}. See also * {@link ByteString#newCodedBuilder}. */ public static CodedOutputStream newInstance(final byte[] flatArray, final int offset, final int length) { return new CodedOutputStream(flatArray, offset, length); } // ----------------------------------------------------------------- /** Write a {@code double} field, including tag, to the stream. */ public void writeDouble(final int fieldNumber, final double value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_FIXED64); writeDoubleNoTag(value); } /** Write a {@code float} field, including tag, to the stream. */ public void writeFloat(final int fieldNumber, final float value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_FIXED32); writeFloatNoTag(value); } /** Write a {@code uint64} field, including tag, to the stream. */ public void writeUInt64(final int fieldNumber, final long value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT); writeUInt64NoTag(value); } /** Write an {@code int64} field, including tag, to the stream. */ public void writeInt64(final int fieldNumber, final long value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT); writeInt64NoTag(value); } /** Write an {@code int32} field, including tag, to the stream. */ public void writeInt32(final int fieldNumber, final int value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT); writeInt32NoTag(value); } /** Write a {@code fixed64} field, including tag, to the stream. */ public void writeFixed64(final int fieldNumber, final long value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_FIXED64); writeFixed64NoTag(value); } /** Write a {@code fixed32} field, including tag, to the stream. */ public void writeFixed32(final int fieldNumber, final int value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_FIXED32); writeFixed32NoTag(value); } /** Write a {@code bool} field, including tag, to the stream. */ public void writeBool(final int fieldNumber, final boolean value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT); writeBoolNoTag(value); } /** Write a {@code string} field, including tag, to the stream. */ public void writeString(final int fieldNumber, final String value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED); writeStringNoTag(value); } /** Write a {@code group} field, including tag, to the stream. */ public void writeGroup(final int fieldNumber, final MessageLite value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_START_GROUP); writeGroupNoTag(value); writeTag(fieldNumber, WireFormat.WIRETYPE_END_GROUP); } /** * Write a group represented by an {@link UnknownFieldSet}. * * @deprecated UnknownFieldSet now implements MessageLite, so you can just * call {@link #writeGroup}. */ @Deprecated public void writeUnknownGroup(final int fieldNumber, final MessageLite value) throws IOException { writeGroup(fieldNumber, value); } /** Write an embedded message field, including tag, to the stream. */ public void writeMessage(final int fieldNumber, final MessageLite value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED); writeMessageNoTag(value); } /** Write a {@code bytes} field, including tag, to the stream. */ public void writeBytes(final int fieldNumber, final ByteString value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_LENGTH_DELIMITED); writeBytesNoTag(value); } /** Write a {@code uint32} field, including tag, to the stream. */ public void writeUInt32(final int fieldNumber, final int value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT); writeUInt32NoTag(value); } /** * Write an enum field, including tag, to the stream. Caller is responsible * for converting the enum value to its numeric value. */ public void writeEnum(final int fieldNumber, final int value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT); writeEnumNoTag(value); } /** Write an {@code sfixed32} field, including tag, to the stream. */ public void writeSFixed32(final int fieldNumber, final int value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_FIXED32); writeSFixed32NoTag(value); } /** Write an {@code sfixed64} field, including tag, to the stream. */ public void writeSFixed64(final int fieldNumber, final long value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_FIXED64); writeSFixed64NoTag(value); } /** Write an {@code sint32} field, including tag, to the stream. */ public void writeSInt32(final int fieldNumber, final int value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT); writeSInt32NoTag(value); } /** Write an {@code sint64} field, including tag, to the stream. */ public void writeSInt64(final int fieldNumber, final long value) throws IOException { writeTag(fieldNumber, WireFormat.WIRETYPE_VARINT); writeSInt64NoTag(value); } /** * Write a MessageSet extension field to the stream. For historical reasons, * the wire format differs from normal fields. */ public void writeMessageSetExtension(final int fieldNumber, final MessageLite value) throws IOException { writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_START_GROUP); writeUInt32(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber); writeMessage(WireFormat.MESSAGE_SET_MESSAGE, value); writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_END_GROUP); } /** * Write an unparsed MessageSet extension field to the stream. For * historical reasons, the wire format differs from normal fields. */ public void writeRawMessageSetExtension(final int fieldNumber, final ByteString value) throws IOException { writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_START_GROUP); writeUInt32(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber); writeBytes(WireFormat.MESSAGE_SET_MESSAGE, value); writeTag(WireFormat.MESSAGE_SET_ITEM, WireFormat.WIRETYPE_END_GROUP); } // ----------------------------------------------------------------- /** Write a {@code double} field to the stream. */ public void writeDoubleNoTag(final double value) throws IOException { writeRawLittleEndian64(Double.doubleToRawLongBits(value)); } /** Write a {@code float} field to the stream. */ public void writeFloatNoTag(final float value) throws IOException { writeRawLittleEndian32(Float.floatToRawIntBits(value)); } /** Write a {@code uint64} field to the stream. */ public void writeUInt64NoTag(final long value) throws IOException { writeRawVarint64(value); } /** Write an {@code int64} field to the stream. */ public void writeInt64NoTag(final long value) throws IOException { writeRawVarint64(value); } /** Write an {@code int32} field to the stream. */ public void writeInt32NoTag(final int value) throws IOException { if (value >= 0) { writeRawVarint32(value); } else { // Must sign-extend. writeRawVarint64(value); } } /** Write a {@code fixed64} field to the stream. */ public void writeFixed64NoTag(final long value) throws IOException { writeRawLittleEndian64(value); } /** Write a {@code fixed32} field to the stream. */ public void writeFixed32NoTag(final int value) throws IOException { writeRawLittleEndian32(value); } /** Write a {@code bool} field to the stream. */ public void writeBoolNoTag(final boolean value) throws IOException { writeRawByte(value ? 1 : 0); } /** Write a {@code string} field to the stream. */ public void writeStringNoTag(final String value) throws IOException { // Unfortunately there does not appear to be any way to tell Java to encode // UTF-8 directly into our buffer, so we have to let it create its own byte // array and then copy. final byte[] bytes = value.getBytes("UTF-8"); writeRawVarint32(bytes.length); writeRawBytes(bytes); } /** Write a {@code group} field to the stream. */ public void writeGroupNoTag(final MessageLite value) throws IOException { value.writeTo(this); } /** * Write a group represented by an {@link UnknownFieldSet}. * * @deprecated UnknownFieldSet now implements MessageLite, so you can just * call {@link #writeGroupNoTag}. */ @Deprecated public void writeUnknownGroupNoTag(final MessageLite value) throws IOException { writeGroupNoTag(value); } /** Write an embedded message field to the stream. */ public void writeMessageNoTag(final MessageLite value) throws IOException { writeRawVarint32(value.getSerializedSize()); value.writeTo(this); } /** Write a {@code bytes} field to the stream. */ public void writeBytesNoTag(final ByteString value) throws IOException { writeRawVarint32(value.size()); writeRawBytes(value); } /** Write a {@code uint32} field to the stream. */ public void writeUInt32NoTag(final int value) throws IOException { writeRawVarint32(value); } /** * Write an enum field to the stream. Caller is responsible * for converting the enum value to its numeric value. */ public void writeEnumNoTag(final int value) throws IOException { writeInt32NoTag(value); } /** Write an {@code sfixed32} field to the stream. */ public void writeSFixed32NoTag(final int value) throws IOException { writeRawLittleEndian32(value); } /** Write an {@code sfixed64} field to the stream. */ public void writeSFixed64NoTag(final long value) throws IOException { writeRawLittleEndian64(value); } /** Write an {@code sint32} field to the stream. */ public void writeSInt32NoTag(final int value) throws IOException { writeRawVarint32(encodeZigZag32(value)); } /** Write an {@code sint64} field to the stream. */ public void writeSInt64NoTag(final long value) throws IOException { writeRawVarint64(encodeZigZag64(value)); } // ================================================================= /** * Compute the number of bytes that would be needed to encode a * {@code double} field, including tag. */ public static int computeDoubleSize(final int fieldNumber, final double value) { return computeTagSize(fieldNumber) + computeDoubleSizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a * {@code float} field, including tag. */ public static int computeFloatSize(final int fieldNumber, final float value) { return computeTagSize(fieldNumber) + computeFloatSizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a * {@code uint64} field, including tag. */ public static int computeUInt64Size(final int fieldNumber, final long value) { return computeTagSize(fieldNumber) + computeUInt64SizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode an * {@code int64} field, including tag. */ public static int computeInt64Size(final int fieldNumber, final long value) { return computeTagSize(fieldNumber) + computeInt64SizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode an * {@code int32} field, including tag. */ public static int computeInt32Size(final int fieldNumber, final int value) { return computeTagSize(fieldNumber) + computeInt32SizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a * {@code fixed64} field, including tag. */ public static int computeFixed64Size(final int fieldNumber, final long value) { return computeTagSize(fieldNumber) + computeFixed64SizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a * {@code fixed32} field, including tag. */ public static int computeFixed32Size(final int fieldNumber, final int value) { return computeTagSize(fieldNumber) + computeFixed32SizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a * {@code bool} field, including tag. */ public static int computeBoolSize(final int fieldNumber, final boolean value) { return computeTagSize(fieldNumber) + computeBoolSizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a * {@code string} field, including tag. */ public static int computeStringSize(final int fieldNumber, final String value) { return computeTagSize(fieldNumber) + computeStringSizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a * {@code group} field, including tag. */ public static int computeGroupSize(final int fieldNumber, final MessageLite value) { return computeTagSize(fieldNumber) * 2 + computeGroupSizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a * {@code group} field represented by an {@code UnknownFieldSet}, including * tag. * * @deprecated UnknownFieldSet now implements MessageLite, so you can just * call {@link #computeGroupSize}. */ @Deprecated public static int computeUnknownGroupSize(final int fieldNumber, final MessageLite value) { return computeGroupSize(fieldNumber, value); } /** * Compute the number of bytes that would be needed to encode an * embedded message field, including tag. */ public static int computeMessageSize(final int fieldNumber, final MessageLite value) { return computeTagSize(fieldNumber) + computeMessageSizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a * {@code bytes} field, including tag. */ public static int computeBytesSize(final int fieldNumber, final ByteString value) { return computeTagSize(fieldNumber) + computeBytesSizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a * {@code uint32} field, including tag. */ public static int computeUInt32Size(final int fieldNumber, final int value) { return computeTagSize(fieldNumber) + computeUInt32SizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode an * enum field, including tag. Caller is responsible for converting the * enum value to its numeric value. */ public static int computeEnumSize(final int fieldNumber, final int value) { return computeTagSize(fieldNumber) + computeEnumSizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode an * {@code sfixed32} field, including tag. */ public static int computeSFixed32Size(final int fieldNumber, final int value) { return computeTagSize(fieldNumber) + computeSFixed32SizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode an * {@code sfixed64} field, including tag. */ public static int computeSFixed64Size(final int fieldNumber, final long value) { return computeTagSize(fieldNumber) + computeSFixed64SizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode an * {@code sint32} field, including tag. */ public static int computeSInt32Size(final int fieldNumber, final int value) { return computeTagSize(fieldNumber) + computeSInt32SizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode an * {@code sint64} field, including tag. */ public static int computeSInt64Size(final int fieldNumber, final long value) { return computeTagSize(fieldNumber) + computeSInt64SizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode a * MessageSet extension to the stream. For historical reasons, * the wire format differs from normal fields. */ public static int computeMessageSetExtensionSize( final int fieldNumber, final MessageLite value) { return computeTagSize(WireFormat.MESSAGE_SET_ITEM) * 2 + computeUInt32Size(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber) + computeMessageSize(WireFormat.MESSAGE_SET_MESSAGE, value); } /** * Compute the number of bytes that would be needed to encode an * unparsed MessageSet extension field to the stream. For * historical reasons, the wire format differs from normal fields. */ public static int computeRawMessageSetExtensionSize( final int fieldNumber, final ByteString value) { return computeTagSize(WireFormat.MESSAGE_SET_ITEM) * 2 + computeUInt32Size(WireFormat.MESSAGE_SET_TYPE_ID, fieldNumber) + computeBytesSize(WireFormat.MESSAGE_SET_MESSAGE, value); } // ----------------------------------------------------------------- /** * Compute the number of bytes that would be needed to encode a * {@code double} field, including tag. */ public static int computeDoubleSizeNoTag(final double value) { return LITTLE_ENDIAN_64_SIZE; } /** * Compute the number of bytes that would be needed to encode a * {@code float} field, including tag. */ public static int computeFloatSizeNoTag(final float value) { return LITTLE_ENDIAN_32_SIZE; } /** * Compute the number of bytes that would be needed to encode a * {@code uint64} field, including tag. */ public static int computeUInt64SizeNoTag(final long value) { return computeRawVarint64Size(value); } /** * Compute the number of bytes that would be needed to encode an * {@code int64} field, including tag. */ public static int computeInt64SizeNoTag(final long value) { return computeRawVarint64Size(value); } /** * Compute the number of bytes that would be needed to encode an * {@code int32} field, including tag. */ public static int computeInt32SizeNoTag(final int value) { if (value >= 0) { return computeRawVarint32Size(value); } else { // Must sign-extend. return 10; } } /** * Compute the number of bytes that would be needed to encode a * {@code fixed64} field. */ public static int computeFixed64SizeNoTag(final long value) { return LITTLE_ENDIAN_64_SIZE; } /** * Compute the number of bytes that would be needed to encode a * {@code fixed32} field. */ public static int computeFixed32SizeNoTag(final int value) { return LITTLE_ENDIAN_32_SIZE; } /** * Compute the number of bytes that would be needed to encode a * {@code bool} field. */ public static int computeBoolSizeNoTag(final boolean value) { return 1; } /** * Compute the number of bytes that would be needed to encode a * {@code string} field. */ public static int computeStringSizeNoTag(final String value) { try { final byte[] bytes = value.getBytes("UTF-8"); return computeRawVarint32Size(bytes.length) + bytes.length; } catch (UnsupportedEncodingException e) { throw new RuntimeException("UTF-8 not supported.", e); } } /** * Compute the number of bytes that would be needed to encode a * {@code group} field. */ public static int computeGroupSizeNoTag(final MessageLite value) { return value.getSerializedSize(); } /** * Compute the number of bytes that would be needed to encode a * {@code group} field represented by an {@code UnknownFieldSet}, including * tag. * * @deprecated UnknownFieldSet now implements MessageLite, so you can just * call {@link #computeUnknownGroupSizeNoTag}. */ @Deprecated public static int computeUnknownGroupSizeNoTag(final MessageLite value) { return computeGroupSizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode an embedded * message field. */ public static int computeMessageSizeNoTag(final MessageLite value) { final int size = value.getSerializedSize(); return computeRawVarint32Size(size) + size; } /** * Compute the number of bytes that would be needed to encode a * {@code bytes} field. */ public static int computeBytesSizeNoTag(final ByteString value) { return computeRawVarint32Size(value.size()) + value.size(); } /** * Compute the number of bytes that would be needed to encode a * {@code uint32} field. */ public static int computeUInt32SizeNoTag(final int value) { return computeRawVarint32Size(value); } /** * Compute the number of bytes that would be needed to encode an enum field. * Caller is responsible for converting the enum value to its numeric value. */ public static int computeEnumSizeNoTag(final int value) { return computeInt32SizeNoTag(value); } /** * Compute the number of bytes that would be needed to encode an * {@code sfixed32} field. */ public static int computeSFixed32SizeNoTag(final int value) { return LITTLE_ENDIAN_32_SIZE; } /** * Compute the number of bytes that would be needed to encode an * {@code sfixed64} field. */ public static int computeSFixed64SizeNoTag(final long value) { return LITTLE_ENDIAN_64_SIZE; } /** * Compute the number of bytes that would be needed to encode an * {@code sint32} field. */ public static int computeSInt32SizeNoTag(final int value) { return computeRawVarint32Size(encodeZigZag32(value)); } /** * Compute the number of bytes that would be needed to encode an * {@code sint64} field. */ public static int computeSInt64SizeNoTag(final long value) { return computeRawVarint64Size(encodeZigZag64(value)); } // ================================================================= /** * Internal helper that writes the current buffer to the output. The * buffer position is reset to its initial value when this returns. */ private void refreshBuffer() throws IOException { if (output == null) { // We're writing to a single buffer. throw new OutOfSpaceException(); } // Since we have an output stream, this is our buffer // and buffer offset == 0 output.write(buffer, 0, position); position = 0; } /** * Flushes the stream and forces any buffered bytes to be written. This * does not flush the underlying OutputStream. */ public void flush() throws IOException { if (output != null) { refreshBuffer(); } } /** * If writing to a flat array, return the space left in the array. * Otherwise, throws {@code UnsupportedOperationException}. */ public int spaceLeft() { if (output == null) { return limit - position; } else { throw new UnsupportedOperationException( "spaceLeft() can only be called on CodedOutputStreams that are " + "writing to a flat array."); } } /** * Verifies that {@link #spaceLeft()} returns zero. It's common to create * a byte array that is exactly big enough to hold a message, then write to * it with a {@code CodedOutputStream}. Calling {@code checkNoSpaceLeft()} * after writing verifies that the message was actually as big as expected, * which can help catch bugs. */ public void checkNoSpaceLeft() { if (spaceLeft() != 0) { throw new IllegalStateException( "Did not write as much data as expected."); } } /** * If you create a CodedOutputStream around a simple flat array, you must * not attempt to write more bytes than the array has space. Otherwise, * this exception will be thrown. */ public static class OutOfSpaceException extends IOException { private static final long serialVersionUID = -6947486886997889499L; OutOfSpaceException() { super("CodedOutputStream was writing to a flat byte array and ran " + "out of space."); } } /** Write a single byte. */ public void writeRawByte(final byte value) throws IOException { if (position == limit) { refreshBuffer(); } buffer[position++] = value; } /** Write a single byte, represented by an integer value. */ public void writeRawByte(final int value) throws IOException { writeRawByte((byte) value); } /** Write a byte string. */ public void writeRawBytes(final ByteString value) throws IOException { writeRawBytes(value, 0, value.size()); } /** Write an array of bytes. */ public void writeRawBytes(final byte[] value) throws IOException { writeRawBytes(value, 0, value.length); } /** Write part of an array of bytes. */ public void writeRawBytes(final byte[] value, int offset, int length) throws IOException { if (limit - position >= length) { // We have room in the current buffer. System.arraycopy(value, offset, buffer, position, length); position += length; } else { // Write extends past current buffer. Fill the rest of this buffer and // flush. final int bytesWritten = limit - position; System.arraycopy(value, offset, buffer, position, bytesWritten); offset += bytesWritten; length -= bytesWritten; position = limit; refreshBuffer(); // Now deal with the rest. // Since we have an output stream, this is our buffer // and buffer offset == 0 if (length <= limit) { // Fits in new buffer. System.arraycopy(value, offset, buffer, 0, length); position = length; } else { // Write is very big. Let's do it all at once. output.write(value, offset, length); } } } /** Write part of a byte string. */ public void writeRawBytes(final ByteString value, int offset, int length) throws IOException { if (limit - position >= length) { // We have room in the current buffer. value.copyTo(buffer, offset, position, length); position += length; } else { // Write extends past current buffer. Fill the rest of this buffer and // flush. final int bytesWritten = limit - position; value.copyTo(buffer, offset, position, bytesWritten); offset += bytesWritten; length -= bytesWritten; position = limit; refreshBuffer(); // Now deal with the rest. // Since we have an output stream, this is our buffer // and buffer offset == 0 if (length <= limit) { // Fits in new buffer. value.copyTo(buffer, offset, 0, length); position = length; } else { // Write is very big, but we can't do it all at once without allocating // an a copy of the byte array since ByteString does not give us access // to the underlying bytes. Use the InputStream interface on the // ByteString and our buffer to copy between the two. InputStream inputStreamFrom = value.newInput(); if (offset != inputStreamFrom.skip(offset)) { throw new IllegalStateException("Skip failed? Should never happen."); } // Use the buffer as the temporary buffer to avoid allocating memory. while (length > 0) { int bytesToRead = Math.min(length, limit); int bytesRead = inputStreamFrom.read(buffer, 0, bytesToRead); if (bytesRead != bytesToRead) { throw new IllegalStateException("Read failed? Should never happen"); } output.write(buffer, 0, bytesRead); length -= bytesRead; } } } } /** Encode and write a tag. */ public void writeTag(final int fieldNumber, final int wireType) throws IOException { writeRawVarint32(WireFormat.makeTag(fieldNumber, wireType)); } /** Compute the number of bytes that would be needed to encode a tag. */ public static int computeTagSize(final int fieldNumber) { return computeRawVarint32Size(WireFormat.makeTag(fieldNumber, 0)); } /** * Encode and write a varint. {@code value} is treated as * unsigned, so it won't be sign-extended if negative. */ public void writeRawVarint32(int value) throws IOException { while (true) { if ((value & ~0x7F) == 0) { writeRawByte(value); return; } else { writeRawByte((value & 0x7F) | 0x80); value >>>= 7; } } } /** * Compute the number of bytes that would be needed to encode a varint. * {@code value} is treated as unsigned, so it won't be sign-extended if * negative. */ public static int computeRawVarint32Size(final int value) { if ((value & (0xffffffff << 7)) == 0) return 1; if ((value & (0xffffffff << 14)) == 0) return 2; if ((value & (0xffffffff << 21)) == 0) return 3; if ((value & (0xffffffff << 28)) == 0) return 4; return 5; } /** Encode and write a varint. */ public void writeRawVarint64(long value) throws IOException { while (true) { if ((value & ~0x7FL) == 0) { writeRawByte((int)value); return; } else { writeRawByte(((int)value & 0x7F) | 0x80); value >>>= 7; } } } /** Compute the number of bytes that would be needed to encode a varint. */ public static int computeRawVarint64Size(final long value) { if ((value & (0xffffffffffffffffL << 7)) == 0) return 1; if ((value & (0xffffffffffffffffL << 14)) == 0) return 2; if ((value & (0xffffffffffffffffL << 21)) == 0) return 3; if ((value & (0xffffffffffffffffL << 28)) == 0) return 4; if ((value & (0xffffffffffffffffL << 35)) == 0) return 5; if ((value & (0xffffffffffffffffL << 42)) == 0) return 6; if ((value & (0xffffffffffffffffL << 49)) == 0) return 7; if ((value & (0xffffffffffffffffL << 56)) == 0) return 8; if ((value & (0xffffffffffffffffL << 63)) == 0) return 9; return 10; } /** Write a little-endian 32-bit integer. */ public void writeRawLittleEndian32(final int value) throws IOException { writeRawByte((value ) & 0xFF); writeRawByte((value >> 8) & 0xFF); writeRawByte((value >> 16) & 0xFF); writeRawByte((value >> 24) & 0xFF); } public static final int LITTLE_ENDIAN_32_SIZE = 4; /** Write a little-endian 64-bit integer. */ public void writeRawLittleEndian64(final long value) throws IOException { writeRawByte((int)(value ) & 0xFF); writeRawByte((int)(value >> 8) & 0xFF); writeRawByte((int)(value >> 16) & 0xFF); writeRawByte((int)(value >> 24) & 0xFF); writeRawByte((int)(value >> 32) & 0xFF); writeRawByte((int)(value >> 40) & 0xFF); writeRawByte((int)(value >> 48) & 0xFF); writeRawByte((int)(value >> 56) & 0xFF); } public static final int LITTLE_ENDIAN_64_SIZE = 8; /** * Encode a ZigZag-encoded 32-bit value. ZigZag encodes signed integers * into values that can be efficiently encoded with varint. (Otherwise, * negative values must be sign-extended to 64 bits to be varint encoded, * thus always taking 10 bytes on the wire.) * * @param n A signed 32-bit integer. * @return An unsigned 32-bit integer, stored in a signed int because * Java has no explicit unsigned support. */ public static int encodeZigZag32(final int n) { // Note: the right-shift must be arithmetic return (n << 1) ^ (n >> 31); } /** * Encode a ZigZag-encoded 64-bit value. ZigZag encodes signed integers * into values that can be efficiently encoded with varint. (Otherwise, * negative values must be sign-extended to 64 bits to be varint encoded, * thus always taking 10 bytes on the wire.) * * @param n A signed 64-bit integer. * @return An unsigned 64-bit integer, stored in a signed int because * Java has no explicit unsigned support. */ public static long encodeZigZag64(final long n) { // Note: the right-shift must be arithmetic return (n << 1) ^ (n >> 63); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy