Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
org.apache.hadoop.hive.ql.optimizer.CountDistinctRewriteProc Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements.See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership.The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License.You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.hive.ql.optimizer;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;
import java.util.Stack;
import com.facebook.presto.hive.$internal.org.slf4j.Logger;
import com.facebook.presto.hive.$internal.org.slf4j.LoggerFactory;
import org.apache.hadoop.hive.conf.HiveConf;
import org.apache.hadoop.hive.ql.exec.ColumnInfo;
import org.apache.hadoop.hive.ql.exec.GroupByOperator;
import org.apache.hadoop.hive.ql.exec.Operator;
import org.apache.hadoop.hive.ql.exec.OperatorFactory;
import org.apache.hadoop.hive.ql.exec.ReduceSinkOperator;
import org.apache.hadoop.hive.ql.exec.RowSchema;
import org.apache.hadoop.hive.ql.exec.TableScanOperator;
import org.apache.hadoop.hive.ql.exec.Utilities;
import org.apache.hadoop.hive.ql.io.AcidUtils;
import org.apache.hadoop.hive.ql.lib.DefaultGraphWalker;
import org.apache.hadoop.hive.ql.lib.DefaultRuleDispatcher;
import org.apache.hadoop.hive.ql.lib.Dispatcher;
import org.apache.hadoop.hive.ql.lib.GraphWalker;
import org.apache.hadoop.hive.ql.lib.Node;
import org.apache.hadoop.hive.ql.lib.NodeProcessor;
import org.apache.hadoop.hive.ql.lib.NodeProcessorCtx;
import org.apache.hadoop.hive.ql.lib.Rule;
import org.apache.hadoop.hive.ql.lib.RuleRegExp;
import org.apache.hadoop.hive.ql.parse.ParseContext;
import org.apache.hadoop.hive.ql.parse.SemanticAnalyzer;
import org.apache.hadoop.hive.ql.parse.SemanticAnalyzer.GenericUDAFInfo;
import org.apache.hadoop.hive.ql.parse.SemanticException;
import org.apache.hadoop.hive.ql.plan.AggregationDesc;
import org.apache.hadoop.hive.ql.plan.ExprNodeColumnDesc;
import org.apache.hadoop.hive.ql.plan.ExprNodeDesc;
import org.apache.hadoop.hive.ql.plan.GroupByDesc;
import org.apache.hadoop.hive.ql.plan.OperatorDesc;
import org.apache.hadoop.hive.ql.plan.PlanUtils;
import org.apache.hadoop.hive.ql.plan.TableScanDesc;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDAFEvaluator;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDAFEvaluator.Mode;
/**
* Queries of form : select max(c), count(distinct c) from T; generates a plan
* of form TS->mGBy->RS->rGBy->FS This plan suffers from a problem that vertex
* containing rGBy->FS necessarily need to have 1 task. This limitation results
* in slow execution because that task gets all the data. This optimization if
* successful will rewrite above plan to mGby1-rs1-mGby2-mGby3-rs2-rGby1 This
* introduces extra vertex of mGby2-mGby3-rs2. Note this vertex can have
* multiple tasks and since we are doing aggregation, output of this must
* necessarily be smaller than its input, which results in much less data going
* in to original rGby->FS vertex, which continues to have single task. Also
* note on calcite tree we have HiveExpandDistinctAggregatesRule rule which does
* similar plan transformation but has different conditions which needs to be
* satisfied. Additionally, we don't do any costing here but this is possibly
* that this transformation may slow down query a bit since if data is small
* enough to fit in a single task of last reducer, injecting additional vertex
* in pipeline may make query slower. If this happens, users can use the
* configuration hive.optimize.countdistinct to turn it off.
*/
public class CountDistinctRewriteProc extends Transform {
private static final Logger LOG = LoggerFactory.getLogger(CountDistinctRewriteProc.class
.getName());
public CountDistinctRewriteProc() {
}
@Override
public ParseContext transform(ParseContext pctx) throws SemanticException {
Map opRules = new LinkedHashMap();
// process group-by pattern
opRules
.put(
new RuleRegExp("R1", GroupByOperator.getOperatorName() + "%"
+ ReduceSinkOperator.getOperatorName() + "%" + GroupByOperator.getOperatorName()
+ "%"), getCountDistinctProc(pctx));
// The dispatcher fires the processor corresponding to the closest matching
// rule and passes the context along
Dispatcher disp = new DefaultRuleDispatcher(getDefaultProc(), opRules, null);
GraphWalker ogw = new DefaultGraphWalker(disp);
// Create a list of topop nodes
List topNodes = new ArrayList();
topNodes.addAll(pctx.getTopOps().values());
ogw.startWalking(topNodes, null);
return pctx;
}
private NodeProcessor getDefaultProc() {
return new NodeProcessor() {
@Override
public Object process(Node nd, Stack stack, NodeProcessorCtx procCtx,
Object... nodeOutputs) throws SemanticException {
return null;
}
};
}
private NodeProcessor getCountDistinctProc(ParseContext pctx) {
return new CountDistinctProcessor(pctx);
}
/**
* CountDistinctProcessor.
*
*/
public class CountDistinctProcessor implements NodeProcessor {
protected ParseContext pGraphContext;
public CountDistinctProcessor(ParseContext pGraphContext) {
this.pGraphContext = pGraphContext;
}
// Check if we can process it or not by the index of distinct
protected int checkCountDistinct(GroupByOperator mGby, ReduceSinkOperator rs,
GroupByOperator rGby) {
// Position of distinct column in aggregator list of map Gby before rewrite.
int indexOfDist = -1;
ArrayList keys = mGby.getConf().getKeys();
if (!(mGby.getConf().getMode() == GroupByDesc.Mode.HASH
&& !mGby.getConf().isGroupingSetsPresent() && rs.getConf().getKeyCols().size() == 1
&& rs.getConf().getPartitionCols().size() == 0
&& rs.getConf().getDistinctColumnIndices().size() == 1
&& rGby.getConf().getMode() == GroupByDesc.Mode.MERGEPARTIAL && keys.size() == 1
&& rGby.getConf().getKeys().size() == 0 && mGby.getConf().getOutputColumnNames().size() == mGby
.getConf().getAggregators().size() + 1)) {
return -1;
}
for (int pos = 0; pos < mGby.getConf().getAggregators().size(); pos++) {
AggregationDesc aggr = mGby.getConf().getAggregators().get(pos);
if (aggr.getDistinct()) {
if (indexOfDist != -1 || !aggr.getGenericUDAFName().equalsIgnoreCase("count")) {
// there are 2 or more distincts, or distinct is not on count
// TODO: may be the same count(distinct key), count(distinct key)
// TODO: deal with duplicate count distinct key
return -1;
}
indexOfDist = pos;
if (!(aggr.getParameters().size() == 1
&& aggr.getParameters().get(0) instanceof ExprNodeColumnDesc && mGby.getConf()
.getKeys().get(0) instanceof ExprNodeColumnDesc)) {
return -1;
} else {
ExprNodeColumnDesc agg = (ExprNodeColumnDesc) aggr.getParameters().get(0);
ExprNodeColumnDesc key = (ExprNodeColumnDesc) mGby.getConf().getKeys().get(0);
if (!agg.isSame(key)) {
return -1;
}
}
}
}
if (indexOfDist == -1) {
return -1;
}
// check if it is potential to trigger nullscan
if (pGraphContext.getConf().getBoolVar(HiveConf.ConfVars.HIVEMETADATAONLYQUERIES)) {
for (TableScanOperator tsOp : pGraphContext.getTopOps().values()) {
List colIDs = tsOp.getNeededColumnIDs();
TableScanDesc desc = tsOp.getConf();
boolean noColNeeded = (colIDs == null) || (colIDs.isEmpty());
boolean noVCneeded = (desc == null) || (desc.getVirtualCols() == null)
|| (desc.getVirtualCols().isEmpty());
boolean isSkipHF = desc.isNeedSkipHeaderFooters();
if (noColNeeded && noVCneeded && !isSkipHF) {
// it is possible that nullscan can fire, we skip this rule.
return -1;
}
}
}
return indexOfDist;
}
/*
* We will transform GB-RS-GBY to mGby1-rs1-mGby2-mGby3-rs2-rGby1
*/
@SuppressWarnings("unchecked")
protected void processGroupBy(GroupByOperator mGby, ReduceSinkOperator rs, GroupByOperator rGby, int indexOfDist)
throws SemanticException, CloneNotSupportedException {
// remove count(distinct) in map-side gby
List> parents = mGby.getParentOperators();
List> children = rGby.getChildOperators();
mGby.removeParents();
rs.removeParents();
rGby.removeParents();
GroupByOperator mGby1 = genMapGroupby1(mGby, indexOfDist);
ReduceSinkOperator rs1 = genReducesink1(mGby1, rs, indexOfDist);
GroupByOperator mGby2 = genMapGroupby2(rs1, mGby, indexOfDist);
GroupByOperator mGby3 = genMapGroupby3(mGby2, mGby, indexOfDist);
ReduceSinkOperator rs2 = genReducesink2(mGby3, rs);
GroupByOperator rGby1 = genReduceGroupby(rs2, rGby, indexOfDist);
for (Operator extends OperatorDesc> parent : parents) {
OperatorFactory.makeChild(parent, mGby1);
}
OperatorFactory.makeChild(mGby1, rs1);
OperatorFactory.makeChild(rs1, mGby2);
OperatorFactory.makeChild(mGby2, mGby3);
OperatorFactory.makeChild(mGby3, rs2);
OperatorFactory.makeChild(rs2, rGby1);
for (Operator extends OperatorDesc> child : children) {
child.removeParents();
OperatorFactory.makeChild(rGby1, child);
}
}
// mGby1 ---already contains group by key, we need to remove distinct column
private GroupByOperator genMapGroupby1(Operator extends OperatorDesc> mGby, int indexOfDist)
throws CloneNotSupportedException {
GroupByOperator mGby1 = (GroupByOperator) mGby.clone();
// distinct is at lost position.
String fieldString = mGby1.getConf().getOutputColumnNames().get(indexOfDist + 1);
mGby1.getColumnExprMap().remove(fieldString);
mGby1.getConf().getOutputColumnNames().remove(indexOfDist + 1);
mGby1.getConf().getAggregators().remove(indexOfDist);
mGby1.getConf().setDistinct(false);
mGby1.getSchema().getColumnNames().remove(indexOfDist + 1);
mGby1.getSchema().getSignature().remove(indexOfDist + 1);
return mGby1;
}
// rs1 --- remove distinctColIndices, set #reducer as -1, reset keys,
// values, colexpmap and rowschema
private ReduceSinkOperator genReducesink1(GroupByOperator mGby1,
Operator extends OperatorDesc> rs, int indexOfDist) throws CloneNotSupportedException,
SemanticException {
ReduceSinkOperator rs1 = (ReduceSinkOperator) rs.clone();
Map colExprMap = new HashMap();
ArrayList outputKeyColumnNames = new ArrayList();
ArrayList outputValueColumnNames = new ArrayList();
ArrayList reduceKeys = new ArrayList();
ArrayList reduceValues = new ArrayList();
ArrayList rowSchema = new ArrayList<>();
List internalNames = new ArrayList<>();
for (int index = 0; index < mGby1.getSchema().getSignature().size(); index++) {
ColumnInfo paraExprInfo = mGby1.getSchema().getSignature().get(index);
String paraExpression = paraExprInfo.getInternalName();
assert (paraExpression != null);
ExprNodeColumnDesc exprDesc = new ExprNodeColumnDesc(paraExprInfo.getType(),
paraExpression, paraExprInfo.getTabAlias(), paraExprInfo.getIsVirtualCol());
// index==0 means this is key
if (index == 0) {
reduceKeys.add(exprDesc);
String outputColName = SemanticAnalyzer.getColumnInternalName(index);
outputKeyColumnNames.add(outputColName);
String internalName = Utilities.ReduceField.KEY.toString() + "." + outputColName;
colExprMap.put(internalName, exprDesc);
internalNames.add(internalName);
rowSchema.add(new ColumnInfo(internalName, mGby1.getSchema().getSignature().get(index).getType(), "", false));
} else {
reduceValues.add(exprDesc);
String outputColName = SemanticAnalyzer.getColumnInternalName(index - 1);
outputValueColumnNames.add(outputColName);
String internalName = Utilities.ReduceField.VALUE.toString() + "." + outputColName;
colExprMap.put(internalName, exprDesc);
internalNames.add(internalName);
rowSchema.add(new ColumnInfo(internalName, mGby1.getSchema().getSignature().get(index).getType(), "", false));
}
}
List> distinctColIndices = new ArrayList<>();
rs1.setConf(PlanUtils.getReduceSinkDesc(reduceKeys, 1, reduceValues, distinctColIndices,
outputKeyColumnNames, outputValueColumnNames, true, -1, 1, -1,
AcidUtils.Operation.NOT_ACID));
rs1.setColumnExprMap(colExprMap);
rs1.setSchema(new RowSchema(rowSchema));
return rs1;
}
// mGby2 ---already contains key, remove distinct and change all the others
private GroupByOperator genMapGroupby2(ReduceSinkOperator rs1,
Operator extends OperatorDesc> mGby, int indexOfDist) throws CloneNotSupportedException, SemanticException {
GroupByOperator mGby2 = (GroupByOperator) mGby.clone();
ArrayList rowSchema = new ArrayList<>();
ArrayList groupByKeys = new ArrayList();
ArrayList outputColumnNames = new ArrayList();
Map colExprMap = new HashMap();
ColumnInfo exprInfo = rs1.getSchema().getSignature().get(0);
ExprNodeDesc key = new ExprNodeColumnDesc(exprInfo);
groupByKeys.add(key);
String field = SemanticAnalyzer.getColumnInternalName(0);
outputColumnNames.add(field);
ColumnInfo oColInfo = new ColumnInfo(field, exprInfo.getType(), "", false);
colExprMap.put(field, key);
rowSchema.add(oColInfo);
ArrayList aggregations = new ArrayList();
for (int index = 0; index < mGby2.getConf().getAggregators().size(); index++) {
ArrayList aggParameters = new ArrayList();
if (index != indexOfDist) {
AggregationDesc desc = mGby2.getConf().getAggregators().get(index);
ColumnInfo paraExprInfo = null;
// for example, original it is max 0, dist 1, min 2
// rs1's schema is key 0, max 1, min 2
if (index < indexOfDist) {
paraExprInfo = rs1.getSchema().getSignature().get(index + 1);
} else {
paraExprInfo = rs1.getSchema().getSignature().get(index);
}
String paraExpression = paraExprInfo.getInternalName();
assert (paraExpression != null);
aggParameters.add(new ExprNodeColumnDesc(paraExprInfo.getType(), paraExpression,
paraExprInfo.getTabAlias(), paraExprInfo.getIsVirtualCol()));
// for all the other aggregations, we set the mode to PARTIAL2
Mode amode = SemanticAnalyzer.groupByDescModeToUDAFMode(GroupByDesc.Mode.PARTIAL2, false);
GenericUDAFEvaluator genericUDAFEvaluator = desc.getGenericUDAFEvaluator();
GenericUDAFInfo udaf = SemanticAnalyzer.getGenericUDAFInfo(genericUDAFEvaluator, amode,
aggParameters);
aggregations.add(new AggregationDesc(desc.getGenericUDAFName(),
udaf.genericUDAFEvaluator, udaf.convertedParameters, false, amode));
String f = SemanticAnalyzer.getColumnInternalName(aggregations.size());
outputColumnNames.add(f);
rowSchema.add(new ColumnInfo(f, udaf.returnType, "", false));
}
}
mGby2.getConf().setMode(GroupByDesc.Mode.PARTIAL2);
mGby2.getConf().setOutputColumnNames(outputColumnNames);
mGby2.getConf().getKeys().clear();
mGby2.getConf().getKeys().addAll(groupByKeys);
mGby2.getConf().getAggregators().clear();
mGby2.getConf().getAggregators().addAll(aggregations);
mGby2.getConf().setDistinct(false);
mGby2.setSchema(new RowSchema(rowSchema));
mGby2.setColumnExprMap(colExprMap);
return mGby2;
}
// mGby3 is a follow up of mGby2. Here we start to count(key).
private GroupByOperator genMapGroupby3(GroupByOperator mGby2,
Operator extends OperatorDesc> mGby, int indexOfDist) throws CloneNotSupportedException, SemanticException {
GroupByOperator mGby3 = (GroupByOperator) mGby.clone();
ArrayList rowSchema = new ArrayList<>();
ArrayList outputColumnNames = new ArrayList();
Map colExprMap = new HashMap();
// exprInfo is the key
ArrayList aggregations = new ArrayList();
for (int index = 0; index <= mGby2.getConf().getAggregators().size(); index++) {
if (index == indexOfDist) {
ArrayList aggParameters = new ArrayList();
// add count(KEY._col0) to replace distinct
ColumnInfo paraExprInfo = mGby2.getSchema().getSignature().get(0);
String paraExpression = paraExprInfo.getInternalName();
assert (paraExpression != null);
aggParameters.add(new ExprNodeColumnDesc(paraExprInfo.getType(), paraExpression,
paraExprInfo.getTabAlias(), paraExprInfo.getIsVirtualCol()));
Mode amode = SemanticAnalyzer.groupByDescModeToUDAFMode(GroupByDesc.Mode.HASH, false);
GenericUDAFEvaluator genericUDAFEvaluator = SemanticAnalyzer.getGenericUDAFEvaluator(
"count", aggParameters, null, false, false);
assert (genericUDAFEvaluator != null);
GenericUDAFInfo udaf = SemanticAnalyzer.getGenericUDAFInfo(genericUDAFEvaluator, amode,
aggParameters);
AggregationDesc newDesc = new AggregationDesc("count", udaf.genericUDAFEvaluator,
udaf.convertedParameters, false, amode);
String f = SemanticAnalyzer.getColumnInternalName(aggregations.size());
aggregations.add(newDesc);
outputColumnNames.add(f);
rowSchema.add(new ColumnInfo(f, udaf.returnType, "", false));
}
if (index == mGby2.getConf().getAggregators().size()) {
break;
}
ArrayList aggParameters = new ArrayList();
AggregationDesc desc = mGby2.getConf().getAggregators().get(index);
ColumnInfo paraExprInfo = null;
// for example, original it is max 0, dist 1, min 2
// rs1's schema is key 0, max 1, min 2
paraExprInfo = mGby2.getSchema().getSignature().get(index + 1);
String paraExpression = paraExprInfo.getInternalName();
assert (paraExpression != null);
aggParameters.add(new ExprNodeColumnDesc(paraExprInfo.getType(), paraExpression,
paraExprInfo.getTabAlias(), paraExprInfo.getIsVirtualCol()));
// for all the other aggregations, we set the mode to PARTIAL2
Mode amode = SemanticAnalyzer.groupByDescModeToUDAFMode(GroupByDesc.Mode.PARTIAL2, false);
GenericUDAFEvaluator genericUDAFEvaluator = desc.getGenericUDAFEvaluator();
GenericUDAFInfo udaf = SemanticAnalyzer.getGenericUDAFInfo(genericUDAFEvaluator, amode,
aggParameters);
String f = SemanticAnalyzer.getColumnInternalName(aggregations.size());
aggregations.add(new AggregationDesc(desc.getGenericUDAFName(), udaf.genericUDAFEvaluator,
udaf.convertedParameters, false, amode));
outputColumnNames.add(f);
rowSchema.add(new ColumnInfo(f, udaf.returnType, "", false));
}
mGby3.getConf().setMode(GroupByDesc.Mode.PARTIAL2);
mGby3.getConf().setOutputColumnNames(outputColumnNames);
mGby3.getConf().getKeys().clear();
mGby3.getConf().getAggregators().clear();
mGby3.getConf().getAggregators().addAll(aggregations);
mGby3.getConf().setDistinct(false);
mGby3.setSchema(new RowSchema(rowSchema));
mGby3.setColumnExprMap(colExprMap);
return mGby3;
}
// #reducer is already 1
private ReduceSinkOperator genReducesink2(GroupByOperator mGby2,
Operator extends OperatorDesc> rs) throws SemanticException, CloneNotSupportedException {
ReduceSinkOperator rs2 = (ReduceSinkOperator) rs.clone();
Map colExprMap = new HashMap<>();
ArrayList outputKeyColumnNames = new ArrayList();
ArrayList outputValueColumnNames = new ArrayList();
ArrayList reduceValues = new ArrayList();
ArrayList rowSchema = new ArrayList<>();
for (int index = 0; index < mGby2.getSchema().getSignature().size(); index++) {
ColumnInfo paraExprInfo = mGby2.getSchema().getSignature().get(index);
String paraExpression = paraExprInfo.getInternalName();
assert (paraExpression != null);
ExprNodeColumnDesc exprDesc = new ExprNodeColumnDesc(paraExprInfo.getType(),
paraExpression, paraExprInfo.getTabAlias(), paraExprInfo.getIsVirtualCol());
reduceValues.add(exprDesc);
String outputColName = SemanticAnalyzer.getColumnInternalName(index);
outputValueColumnNames.add(outputColName);
String internalName = Utilities.ReduceField.VALUE.toString() + "." + outputColName;
colExprMap.put(internalName, exprDesc);
rowSchema.add(new ColumnInfo(internalName, paraExprInfo.getType(), "", false));
}
List> distinctColIndices = new ArrayList<>();
ArrayList reduceKeys = new ArrayList<>();
rs2.setConf(PlanUtils.getReduceSinkDesc(reduceKeys, 0, reduceValues, distinctColIndices,
outputKeyColumnNames, outputValueColumnNames, false, -1, 0, 1,
AcidUtils.Operation.NOT_ACID));
rs2.setColumnExprMap(colExprMap);
rs2.setSchema(new RowSchema(rowSchema));
return rs2;
}
// replace the distinct with the count aggregation
private GroupByOperator genReduceGroupby(ReduceSinkOperator rs2,
Operator extends OperatorDesc> rGby, int indexOfDist) throws SemanticException,
CloneNotSupportedException {
GroupByOperator rGby1 = (GroupByOperator) rGby.clone();
ColumnInfo paraExprInfo = rs2.getSchema().getSignature().get(indexOfDist);
String paraExpression = paraExprInfo.getInternalName();
assert (paraExpression != null);
ArrayList aggParameters = new ArrayList();
aggParameters.add(new ExprNodeColumnDesc(paraExprInfo.getType(), paraExpression, paraExprInfo
.getTabAlias(), paraExprInfo.getIsVirtualCol()));
GenericUDAFEvaluator genericUDAFEvaluator = SemanticAnalyzer.getGenericUDAFEvaluator("count",
aggParameters, null, false, false);
assert (genericUDAFEvaluator != null);
Mode amode = SemanticAnalyzer.groupByDescModeToUDAFMode(GroupByDesc.Mode.MERGEPARTIAL, false);
GenericUDAFInfo udaf = SemanticAnalyzer.getGenericUDAFInfo(genericUDAFEvaluator, amode,
aggParameters);
AggregationDesc newDesc = new AggregationDesc("count", udaf.genericUDAFEvaluator,
udaf.convertedParameters, false, amode);
rGby1.getConf().getAggregators().set(indexOfDist, newDesc);
rGby1.getConf().setDistinct(false);
return rGby1;
}
@Override
public Object process(Node nd, Stack stack, NodeProcessorCtx procCtx,
Object... nodeOutputs) throws SemanticException {
GroupByOperator mGby = (GroupByOperator) stack.get(stack.size() - 3);
ReduceSinkOperator rs = (ReduceSinkOperator) stack.get(stack.size() - 2);
GroupByOperator rGby = (GroupByOperator) stack.get(stack.size() - 1);
int applicableDistPos = checkCountDistinct(mGby, rs, rGby);
if (applicableDistPos != -1) {
LOG.info("trigger count distinct rewrite");
try {
processGroupBy(mGby, rs, rGby, applicableDistPos);
} catch (CloneNotSupportedException e) {
throw new SemanticException(e.getMessage());
}
}
return null;
}
}
}