Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.orc.impl;
import org.apache.orc.impl.DynamicIntArray;
/**
* A memory efficient red-black tree that does not allocate any objects per
* an element. This class is abstract and assumes that the child class
* handles the key and comparisons with the key.
*/
abstract class RedBlackTree {
public static final int NULL = -1;
// Various values controlling the offset of the data within the array.
private static final int LEFT_OFFSET = 0;
private static final int RIGHT_OFFSET = 1;
private static final int ELEMENT_SIZE = 2;
protected int size = 0;
private final DynamicIntArray data;
protected int root = NULL;
protected int lastAdd = 0;
private boolean wasAdd = false;
/**
* Create a set with the given initial capacity.
*/
public RedBlackTree(int initialCapacity) {
data = new DynamicIntArray(initialCapacity * ELEMENT_SIZE);
}
/**
* Insert a new node into the data array, growing the array as necessary.
*
* @return Returns the position of the new node.
*/
private int insert(int left, int right, boolean isRed) {
int position = size;
size += 1;
setLeft(position, left, isRed);
setRight(position, right);
return position;
}
/**
* Compare the value at the given position to the new value.
* @return 0 if the values are the same, -1 if the new value is smaller and
* 1 if the new value is larger.
*/
protected abstract int compareValue(int position);
/**
* Is the given node red as opposed to black? To prevent having an extra word
* in the data array, we just the low bit on the left child index.
*/
protected boolean isRed(int position) {
return position != NULL &&
(data.get(position * ELEMENT_SIZE + LEFT_OFFSET) & 1) == 1;
}
/**
* Set the red bit true or false.
*/
private void setRed(int position, boolean isRed) {
int offset = position * ELEMENT_SIZE + LEFT_OFFSET;
if (isRed) {
data.set(offset, data.get(offset) | 1);
} else {
data.set(offset, data.get(offset) & ~1);
}
}
/**
* Get the left field of the given position.
*/
protected int getLeft(int position) {
return data.get(position * ELEMENT_SIZE + LEFT_OFFSET) >> 1;
}
/**
* Get the right field of the given position.
*/
protected int getRight(int position) {
return data.get(position * ELEMENT_SIZE + RIGHT_OFFSET);
}
/**
* Set the left field of the given position.
* Note that we are storing the node color in the low bit of the left pointer.
*/
private void setLeft(int position, int left) {
int offset = position * ELEMENT_SIZE + LEFT_OFFSET;
data.set(offset, (left << 1) | (data.get(offset) & 1));
}
/**
* Set the left field of the given position.
* Note that we are storing the node color in the low bit of the left pointer.
*/
private void setLeft(int position, int left, boolean isRed) {
int offset = position * ELEMENT_SIZE + LEFT_OFFSET;
data.set(offset, (left << 1) | (isRed ? 1 : 0));
}
/**
* Set the right field of the given position.
*/
private void setRight(int position, int right) {
data.set(position * ELEMENT_SIZE + RIGHT_OFFSET, right);
}
/**
* Insert or find a given key in the tree and rebalance the tree correctly.
* Rebalancing restores the red-black aspect of the tree to maintain the
* invariants:
* 1. If a node is red, both of its children are black.
* 2. Each child of a node has the same black height (the number of black
* nodes between it and the leaves of the tree).
*
* Inserted nodes are at the leaves and are red, therefore there is at most a
* violation of rule 1 at the node we just put in. Instead of always keeping
* the parents, this routine passing down the context.
*
* The fix is broken down into 6 cases (1.{1,2,3} and 2.{1,2,3} that are
* left-right mirror images of each other). See Algorighms by Cormen,
* Leiserson, and Rivest for the explaination of the subcases.
*
* @param node The node that we are fixing right now.
* @param fromLeft Did we come down from the left?
* @param parent Nodes' parent
* @param grandparent Parent's parent
* @param greatGrandparent Grandparent's parent
* @return Does parent also need to be checked and/or fixed?
*/
private boolean add(int node, boolean fromLeft, int parent,
int grandparent, int greatGrandparent) {
if (node == NULL) {
if (root == NULL) {
lastAdd = insert(NULL, NULL, false);
root = lastAdd;
wasAdd = true;
return false;
} else {
lastAdd = insert(NULL, NULL, true);
node = lastAdd;
wasAdd = true;
// connect the new node into the tree
if (fromLeft) {
setLeft(parent, node);
} else {
setRight(parent, node);
}
}
} else {
int compare = compareValue(node);
boolean keepGoing;
// Recurse down to find where the node needs to be added
if (compare < 0) {
keepGoing = add(getLeft(node), true, node, parent, grandparent);
} else if (compare > 0) {
keepGoing = add(getRight(node), false, node, parent, grandparent);
} else {
lastAdd = node;
wasAdd = false;
return false;
}
// we don't need to fix the root (because it is always set to black)
if (node == root || !keepGoing) {
return false;
}
}
// Do we need to fix this node? Only if there are two reds right under each
// other.
if (isRed(node) && isRed(parent)) {
if (parent == getLeft(grandparent)) {
int uncle = getRight(grandparent);
if (isRed(uncle)) {
// case 1.1
setRed(parent, false);
setRed(uncle, false);
setRed(grandparent, true);
return true;
} else {
if (node == getRight(parent)) {
// case 1.2
// swap node and parent
int tmp = node;
node = parent;
parent = tmp;
// left-rotate on node
setLeft(grandparent, parent);
setRight(node, getLeft(parent));
setLeft(parent, node);
}
// case 1.2 and 1.3
setRed(parent, false);
setRed(grandparent, true);
// right-rotate on grandparent
if (greatGrandparent == NULL) {
root = parent;
} else if (getLeft(greatGrandparent) == grandparent) {
setLeft(greatGrandparent, parent);
} else {
setRight(greatGrandparent, parent);
}
setLeft(grandparent, getRight(parent));
setRight(parent, grandparent);
return false;
}
} else {
int uncle = getLeft(grandparent);
if (isRed(uncle)) {
// case 2.1
setRed(parent, false);
setRed(uncle, false);
setRed(grandparent, true);
return true;
} else {
if (node == getLeft(parent)) {
// case 2.2
// swap node and parent
int tmp = node;
node = parent;
parent = tmp;
// right-rotate on node
setRight(grandparent, parent);
setLeft(node, getRight(parent));
setRight(parent, node);
}
// case 2.2 and 2.3
setRed(parent, false);
setRed(grandparent, true);
// left-rotate on grandparent
if (greatGrandparent == NULL) {
root = parent;
} else if (getRight(greatGrandparent) == grandparent) {
setRight(greatGrandparent, parent);
} else {
setLeft(greatGrandparent, parent);
}
setRight(grandparent, getLeft(parent));
setLeft(parent, grandparent);
return false;
}
}
} else {
return true;
}
}
/**
* Add the new key to the tree.
* @return true if the element is a new one.
*/
protected boolean add() {
add(root, false, NULL, NULL, NULL);
if (wasAdd) {
setRed(root, false);
return true;
} else {
return false;
}
}
/**
* Get the number of elements in the set.
*/
public int size() {
return size;
}
/**
* Reset the table to empty.
*/
public void clear() {
root = NULL;
size = 0;
data.clear();
}
/**
* Get the buffer size in bytes.
*/
public long getSizeInBytes() {
return data.getSizeInBytes();
}
}