All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.hadoop.hive.ql.exec.spark.RemoteHiveSparkClient Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 * 

* http://www.apache.org/licenses/LICENSE-2.0 *

* Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.hadoop.hive.ql.exec.spark; import com.facebook.presto.hive.$internal.com.google.common.base.Splitter; import com.facebook.presto.hive.$internal.com.google.common.base.Strings; import java.io.IOException; import java.io.Serializable; import java.io.StringWriter; import java.net.URI; import java.net.URISyntaxException; import java.util.ArrayList; import java.util.List; import java.util.Map; import java.util.concurrent.Future; import java.util.concurrent.TimeUnit; import java.util.concurrent.TimeoutException; import com.facebook.presto.hive.$internal.org.apache.commons.lang.StringUtils; import org.apache.hadoop.hive.ql.io.NullScanFileSystem; import com.facebook.presto.hive.$internal.org.slf4j.Logger; import com.facebook.presto.hive.$internal.org.slf4j.LoggerFactory; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.hive.common.FileUtils; import org.apache.hadoop.hive.conf.HiveConf; import org.apache.hadoop.hive.conf.HiveConf.ConfVars; import org.apache.hadoop.hive.conf.HiveConfUtil; import org.apache.hadoop.hive.ql.Context; import org.apache.hadoop.hive.ql.DriverContext; import org.apache.hadoop.hive.ql.exec.DagUtils; import org.apache.hadoop.hive.ql.exec.Utilities; import org.apache.hadoop.hive.ql.exec.spark.status.SparkJobRef; import org.apache.hadoop.hive.ql.exec.spark.status.impl.RemoteSparkJobRef; import org.apache.hadoop.hive.ql.exec.spark.status.impl.RemoteSparkJobStatus; import org.apache.hadoop.hive.ql.io.HiveKey; import org.apache.hadoop.hive.ql.metadata.HiveException; import org.apache.hadoop.hive.ql.plan.BaseWork; import org.apache.hadoop.hive.ql.plan.SparkWork; import org.apache.hadoop.hive.ql.session.SessionState; import org.apache.hadoop.io.BytesWritable; import org.apache.hadoop.mapred.JobConf; import org.apache.hive.spark.client.Job; import org.apache.hive.spark.client.JobContext; import org.apache.hive.spark.client.JobHandle; import org.apache.hive.spark.client.SparkClient; import org.apache.hive.spark.client.SparkClientFactory; import org.apache.hive.spark.client.SparkClientUtilities; import org.apache.hive.spark.counter.SparkCounters; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaFutureAction; import org.apache.spark.api.java.JavaPairRDD; /** * RemoteSparkClient is a wrapper of {@link org.apache.hive.spark.client.SparkClient}, which * wrap a spark job request and send to an remote SparkContext. */ public class RemoteHiveSparkClient implements HiveSparkClient { private static final long serialVersionUID = 1L; private static final String MR_JAR_PROPERTY = "tmpjars"; private static final String MR_CREDENTIALS_LOCATION_PROPERTY = "mapreduce.job.credentials.binary"; private static final transient Logger LOG = LoggerFactory.getLogger(RemoteHiveSparkClient.class); private static final transient Splitter CSV_SPLITTER = Splitter.on(",").omitEmptyStrings(); private transient Map conf; private transient SparkClient remoteClient; private transient SparkConf sparkConf; private transient HiveConf hiveConf; private transient List localJars = new ArrayList(); private transient List localFiles = new ArrayList(); private final transient long sparkClientTimtout; private final String sessionId; RemoteHiveSparkClient(HiveConf hiveConf, Map conf, String sessionId) throws Exception { this.hiveConf = hiveConf; sparkClientTimtout = hiveConf.getTimeVar(HiveConf.ConfVars.SPARK_CLIENT_FUTURE_TIMEOUT, TimeUnit.SECONDS); sparkConf = HiveSparkClientFactory.generateSparkConf(conf); this.conf = conf; this.sessionId = sessionId; createRemoteClient(); } private void createRemoteClient() throws Exception { remoteClient = SparkClientFactory.createClient(conf, hiveConf, sessionId); if (HiveConf.getBoolVar(hiveConf, ConfVars.HIVE_PREWARM_ENABLED) && (SparkClientUtilities.isYarnMaster(hiveConf.get("spark.master")) || SparkClientUtilities.isLocalMaster(hiveConf.get("spark.master")))) { int minExecutors = getExecutorsToWarm(); if (minExecutors <= 0) { return; } LOG.info("Prewarm Spark executors. The minimum number of executors to warm is " + minExecutors); // Spend at most HIVE_PREWARM_SPARK_TIMEOUT to wait for executors to come up. int curExecutors = 0; long maxPrewarmTime = HiveConf.getTimeVar(hiveConf, ConfVars.HIVE_PREWARM_SPARK_TIMEOUT, TimeUnit.MILLISECONDS); long ts = System.currentTimeMillis(); do { try { curExecutors = getExecutorCount(maxPrewarmTime, TimeUnit.MILLISECONDS); } catch (TimeoutException e) { // let's don't fail on future timeout since we have a timeout for pre-warm LOG.warn("Timed out getting executor count.", e); } if (curExecutors >= minExecutors) { LOG.info("Finished prewarming Spark executors. The current number of executors is " + curExecutors); return; } Thread.sleep(500); // sleep half a second } while (System.currentTimeMillis() - ts < maxPrewarmTime); LOG.info("Timeout (" + maxPrewarmTime / 1000 + "s) occurred while prewarming executors. " + "The current number of executors is " + curExecutors); } } /** * Please note that the method is very tied with Spark documentation 1.4.1 regarding * dynamic allocation, such as default values. * @return */ private int getExecutorsToWarm() { int minExecutors = HiveConf.getIntVar(hiveConf, HiveConf.ConfVars.HIVE_PREWARM_NUM_CONTAINERS); boolean dynamicAllocation = hiveConf.getBoolean("spark.dynamicAllocation.enabled", false); if (dynamicAllocation) { int min = sparkConf.getInt("spark.dynamicAllocation.minExecutors", 0); int initExecutors = sparkConf.getInt("spark.dynamicAllocation.initialExecutors", min); minExecutors = Math.min(minExecutors, initExecutors); } else { int execInstances = sparkConf.getInt("spark.executor.instances", 2); minExecutors = Math.min(minExecutors, execInstances); } return minExecutors; } private int getExecutorCount(long timeout, TimeUnit unit) throws Exception { Future handler = remoteClient.getExecutorCount(); return handler.get(timeout, unit); } @Override public SparkConf getSparkConf() { return sparkConf; } @Override public int getExecutorCount() throws Exception { return getExecutorCount(sparkClientTimtout, TimeUnit.SECONDS); } @Override public int getDefaultParallelism() throws Exception { Future handler = remoteClient.getDefaultParallelism(); return handler.get(sparkClientTimtout, TimeUnit.SECONDS); } @Override public SparkJobRef execute(final DriverContext driverContext, final SparkWork sparkWork) throws Exception { if (SparkClientUtilities.isYarnMaster(hiveConf.get("spark.master")) && !remoteClient.isActive()) { // Re-create the remote client if not active any more close(); createRemoteClient(); } try { return submit(driverContext, sparkWork); } catch (Throwable cause) { throw new Exception("Failed to submit Spark work, please retry later", cause); } } private SparkJobRef submit(final DriverContext driverContext, final SparkWork sparkWork) throws Exception { final Context ctx = driverContext.getCtx(); final HiveConf hiveConf = (HiveConf) ctx.getConf(); refreshLocalResources(sparkWork, hiveConf); final JobConf jobConf = new JobConf(hiveConf); //update the credential provider location in the jobConf HiveConfUtil.updateJobCredentialProviders(jobConf); // Create temporary scratch dir final Path emptyScratchDir = ctx.getMRTmpPath(); FileSystem fs = emptyScratchDir.getFileSystem(jobConf); fs.mkdirs(emptyScratchDir); // make sure NullScanFileSystem can be loaded - HIVE-18442 jobConf.set("fs." + NullScanFileSystem.getBaseScheme() + ".impl", NullScanFileSystem.class.getCanonicalName()); byte[] jobConfBytes = KryoSerializer.serializeJobConf(jobConf); byte[] scratchDirBytes = KryoSerializer.serialize(emptyScratchDir); byte[] sparkWorkBytes = KryoSerializer.serialize(sparkWork); JobStatusJob job = new JobStatusJob(jobConfBytes, scratchDirBytes, sparkWorkBytes); if (driverContext.isShutdown()) { throw new HiveException("Operation is cancelled."); } JobHandle jobHandle = remoteClient.submit(job); RemoteSparkJobStatus sparkJobStatus = new RemoteSparkJobStatus(remoteClient, jobHandle, sparkClientTimtout); return new RemoteSparkJobRef(hiveConf, jobHandle, sparkJobStatus); } private void refreshLocalResources(SparkWork sparkWork, HiveConf conf) throws IOException { // add hive-exec jar addJars((new JobConf(this.getClass())).getJar()); // add aux jars addJars(conf.getAuxJars()); addJars(SessionState.get() == null ? null : SessionState.get().getReloadableAuxJars()); // add added jars String addedJars = Utilities.getResourceFiles(conf, SessionState.ResourceType.JAR); HiveConf.setVar(conf, HiveConf.ConfVars.HIVEADDEDJARS, addedJars); addJars(addedJars); // add plugin module jars on demand // jobConf will hold all the configuration for hadoop, tez, and hive JobConf jobConf = new JobConf(conf); jobConf.set(MR_JAR_PROPERTY, ""); for (BaseWork work : sparkWork.getAllWork()) { work.configureJobConf(jobConf); } addJars(jobConf.get(MR_JAR_PROPERTY)); // remove the location of container tokens conf.unset(MR_CREDENTIALS_LOCATION_PROPERTY); // add added files String addedFiles = Utilities.getResourceFiles(conf, SessionState.ResourceType.FILE); HiveConf.setVar(conf, HiveConf.ConfVars.HIVEADDEDFILES, addedFiles); addResources(addedFiles); // add added archives String addedArchives = Utilities.getResourceFiles(conf, SessionState.ResourceType.ARCHIVE); HiveConf.setVar(conf, HiveConf.ConfVars.HIVEADDEDARCHIVES, addedArchives); addResources(addedArchives); } private void addResources(String addedFiles) throws IOException { for (String addedFile : CSV_SPLITTER.split(Strings.nullToEmpty(addedFiles))) { try { URI fileUri = FileUtils.getURI(addedFile); if (fileUri != null && !localFiles.contains(fileUri)) { localFiles.add(fileUri); if (SparkUtilities.needUploadToHDFS(fileUri, sparkConf)) { fileUri = SparkUtilities.uploadToHDFS(fileUri, hiveConf); } remoteClient.addFile(fileUri); } } catch (URISyntaxException e) { LOG.warn("Failed to add file:" + addedFile, e); } } } private void addJars(String addedJars) throws IOException { for (String addedJar : CSV_SPLITTER.split(Strings.nullToEmpty(addedJars))) { try { URI jarUri = FileUtils.getURI(addedJar); if (jarUri != null && !localJars.contains(jarUri)) { localJars.add(jarUri); if (SparkUtilities.needUploadToHDFS(jarUri, sparkConf)) { jarUri = SparkUtilities.uploadToHDFS(jarUri, hiveConf); } remoteClient.addJar(jarUri); } } catch (URISyntaxException e) { LOG.warn("Failed to add jar:" + addedJar, e); } } } @Override public void close() { if (remoteClient != null) { remoteClient.stop(); } localFiles.clear(); localJars.clear(); } private static class JobStatusJob implements Job { private static final long serialVersionUID = 1L; private final byte[] jobConfBytes; private final byte[] scratchDirBytes; private final byte[] sparkWorkBytes; @SuppressWarnings("unused") private JobStatusJob() { // For deserialization. this(null, null, null); } JobStatusJob(byte[] jobConfBytes, byte[] scratchDirBytes, byte[] sparkWorkBytes) { this.jobConfBytes = jobConfBytes; this.scratchDirBytes = scratchDirBytes; this.sparkWorkBytes = sparkWorkBytes; } @Override public Serializable call(JobContext jc) throws Exception { JobConf localJobConf = KryoSerializer.deserializeJobConf(jobConfBytes); // Add jar to current thread class loader dynamically, and add jar paths to JobConf as Spark // may need to load classes from this jar in other threads. Map addedJars = jc.getAddedJars(); if (addedJars != null && !addedJars.isEmpty()) { List localAddedJars = SparkClientUtilities.addToClassPath(addedJars, localJobConf, jc.getLocalTmpDir()); localJobConf.set(Utilities.HIVE_ADDED_JARS, StringUtils.join(localAddedJars, ";")); } Path localScratchDir = KryoSerializer.deserialize(scratchDirBytes, Path.class); SparkWork localSparkWork = KryoSerializer.deserialize(sparkWorkBytes, SparkWork.class); logConfigurations(localJobConf); SparkCounters sparkCounters = new SparkCounters(jc.sc()); Map> prefixes = localSparkWork.getRequiredCounterPrefix(); if (prefixes != null) { for (String group : prefixes.keySet()) { for (String counterName : prefixes.get(group)) { sparkCounters.createCounter(group, counterName); } } } SparkReporter sparkReporter = new SparkReporter(sparkCounters); // Generate Spark plan SparkPlanGenerator gen = new SparkPlanGenerator(jc.sc(), null, localJobConf, localScratchDir, sparkReporter); SparkPlan plan = gen.generate(localSparkWork); jc.sc().setJobGroup("queryId = " + localSparkWork.getQueryId(), DagUtils.getQueryName(localJobConf)); // Execute generated plan. JavaPairRDD finalRDD = plan.generateGraph(); // We use Spark RDD async action to submit job as it's the only way to get jobId now. JavaFutureAction future = finalRDD.foreachAsync(HiveVoidFunction.getInstance()); jc.monitor(future, sparkCounters, plan.getCachedRDDIds()); return null; } private void logConfigurations(JobConf localJobConf) { if (LOG.isDebugEnabled()) { LOG.debug("Logging job configuration: "); StringBuilder outWriter = new StringBuilder(); // redact sensitive information before logging HiveConfUtil.dumpConfig(localJobConf, outWriter); LOG.debug(outWriter.toString()); } } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy