All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.hadoop.hive.ql.optimizer.GlobalLimitOptimizer Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.hadoop.hive.ql.optimizer;

import java.util.Collection;
import java.util.Map;
import java.util.Set;

import com.facebook.presto.hive.$internal.org.slf4j.Logger;
import com.facebook.presto.hive.$internal.org.slf4j.LoggerFactory;
import org.apache.hadoop.hive.ql.Context;
import org.apache.hadoop.hive.ql.exec.FilterOperator;
import org.apache.hadoop.hive.ql.exec.GroupByOperator;
import org.apache.hadoop.hive.ql.plan.LimitDesc;
import org.apache.hadoop.hive.ql.exec.LimitOperator;
import org.apache.hadoop.hive.ql.exec.Operator;
import org.apache.hadoop.hive.ql.exec.OperatorUtils;
import org.apache.hadoop.hive.ql.exec.ReduceSinkOperator;
import org.apache.hadoop.hive.ql.exec.TableScanOperator;
import org.apache.hadoop.hive.ql.metadata.Table;
import org.apache.hadoop.hive.ql.optimizer.ppr.PartitionPruner;
import org.apache.hadoop.hive.ql.parse.GlobalLimitCtx;
import org.apache.hadoop.hive.ql.parse.ParseContext;
import org.apache.hadoop.hive.ql.parse.PrunedPartitionList;
import org.apache.hadoop.hive.ql.parse.SemanticException;
import org.apache.hadoop.hive.ql.parse.SplitSample;
import org.apache.hadoop.hive.ql.plan.FilterDesc;
import org.apache.hadoop.hive.ql.plan.GroupByDesc;
import org.apache.hadoop.hive.ql.plan.ReduceSinkDesc;

import com.facebook.presto.hive.$internal.com.google.common.collect.ImmutableSet;
import com.facebook.presto.hive.$internal.com.google.common.collect.Multimap;

/**
 * This optimizer is used to reduce the input size for the query for queries which are
 * specifying a limit.
 * 

* For eg. for a query of type: *

* select expr from T where limit 100; *

* Most probably, the whole table T need not be scanned. * Chances are that even if we scan the first file of T, we would get the 100 rows * needed by this query. * This optimizer step populates the GlobalLimitCtx which is used later on to prune the inputs. */ public class GlobalLimitOptimizer extends Transform { private final Logger LOG = LoggerFactory.getLogger(GlobalLimitOptimizer.class.getName()); @Override public ParseContext transform(ParseContext pctx) throws SemanticException { Context ctx = pctx.getContext(); Map topOps = pctx.getTopOps(); GlobalLimitCtx globalLimitCtx = pctx.getGlobalLimitCtx(); Map nameToSplitSample = pctx.getNameToSplitSample(); // determine the query qualifies reduce input size for LIMIT // The query only qualifies when there are only one top operator // and there is no transformer or UDTF and no block sampling // is used. if (topOps.size() == 1 && !globalLimitCtx.ifHasTransformOrUDTF() && nameToSplitSample.isEmpty()) { // Here we recursively check: // 1. whether there are exact one LIMIT in the query // 2. whether there is no aggregation, group-by, distinct, sort by, // distributed by, or table sampling in any of the sub-query. // The query only qualifies if both conditions are satisfied. // // Example qualified queries: // CREATE TABLE ... AS SELECT col1, col2 FROM tbl LIMIT .. // INSERT OVERWRITE TABLE ... SELECT col1, hash(col2), split(col1) // FROM ... LIMIT... // SELECT * FROM (SELECT col1 as col2 (SELECT * FROM ...) t1 LIMIT ...) t2); // TableScanOperator ts = topOps.values().iterator().next(); LimitOperator tempGlobalLimit = checkQbpForGlobalLimit(ts); // query qualify for the optimization if (tempGlobalLimit != null) { LimitDesc tempGlobalLimitDesc = tempGlobalLimit.getConf(); Table tab = ts.getConf().getTableMetadata(); Set filterOps = OperatorUtils.findOperators(ts, FilterOperator.class); if (!tab.isPartitioned()) { if (filterOps.size() == 0) { Integer tempOffset = tempGlobalLimitDesc.getOffset(); globalLimitCtx.enableOpt(tempGlobalLimitDesc.getLimit(), (tempOffset == null) ? 0 : tempOffset); } } else { // check if the pruner only contains partition columns if (onlyContainsPartnCols(tab, filterOps)) { String alias = (String) topOps.keySet().toArray()[0]; PrunedPartitionList partsList = pctx.getPrunedPartitions(alias, ts); // If there is any unknown partition, create a map-reduce job for // the filter to prune correctly if (!partsList.hasUnknownPartitions()) { Integer tempOffset = tempGlobalLimitDesc.getOffset(); globalLimitCtx.enableOpt(tempGlobalLimitDesc.getLimit(), (tempOffset == null) ? 0 : tempOffset); } } } if (globalLimitCtx.isEnable()) { LOG.info("Qualify the optimize that reduces input size for 'offset' for offset " + globalLimitCtx.getGlobalOffset()); LOG.info("Qualify the optimize that reduces input size for 'limit' for limit " + globalLimitCtx.getGlobalLimit()); } } } return pctx; } private boolean onlyContainsPartnCols(Table table, Set filters) { for (FilterOperator filter : filters) { if (!PartitionPruner.onlyContainsPartnCols(table, filter.getConf().getPredicate())) { return false; } } return true; } /** * Check the limit number in all sub queries * * @return if there is one and only one limit for all subqueries, return the limit * if there is no limit, return 0 * otherwise, return null */ private static LimitOperator checkQbpForGlobalLimit(TableScanOperator ts) { Set>> searchedClasses = new ImmutableSet.Builder>>() .add(ReduceSinkOperator.class) .add(GroupByOperator.class) .add(FilterOperator.class) .add(LimitOperator.class) .build(); Multimap>, Operator> ops = OperatorUtils.classifyOperators(ts, searchedClasses); // To apply this optimization, in the input query: // - There cannot exist any order by/sort by clause, // thus existsOrdering should be false. // - There cannot exist any distribute by clause, thus // existsPartitioning should be false. // - There cannot exist any cluster by clause, thus // existsOrdering AND existsPartitioning should be false. for (Operator op : ops.get(ReduceSinkOperator.class)) { ReduceSinkDesc reduceSinkConf = ((ReduceSinkOperator) op).getConf(); if (reduceSinkConf.isOrdering() || reduceSinkConf.isPartitioning()) { return null; } } // - There cannot exist any (distinct) aggregate. for (Operator op : ops.get(GroupByOperator.class)) { GroupByDesc groupByConf = ((GroupByOperator) op).getConf(); if (groupByConf.isAggregate() || groupByConf.isDistinct()) { return null; } } // - There cannot exist any sampling predicate. for (Operator op : ops.get(FilterOperator.class)) { FilterDesc filterConf = ((FilterOperator) op).getConf(); if (filterConf.getIsSamplingPred()) { return null; } } // If there is one and only one limit starting at op, return the limit // If there is no limit, return 0 // Otherwise, return null Collection> limitOps = ops.get(LimitOperator.class); if (limitOps.size() == 1) { return (LimitOperator) limitOps.iterator().next(); } else if (limitOps.size() == 0) { return null; } return null; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy