org.apache.spark.rdd.ParallelCollectionRDD.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of spark-core Show documentation
Show all versions of spark-core Show documentation
Shaded version of Apache Spark 2.x.x for Presto
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.rdd
import java.io._
import scala.Serializable
import scala.collection.Map
import scala.collection.immutable.NumericRange
import scala.collection.mutable.ArrayBuffer
import scala.reflect.ClassTag
import org.apache.spark._
import org.apache.spark.serializer.JavaSerializer
import org.apache.spark.util.Utils
private[spark] class ParallelCollectionPartition[T: ClassTag](
var rddId: Long,
var slice: Int,
var values: Seq[T]
) extends Partition with Serializable {
def iterator: Iterator[T] = values.iterator
override def hashCode(): Int = (41 * (41 + rddId) + slice).toInt
override def equals(other: Any): Boolean = other match {
case that: ParallelCollectionPartition[_] =>
this.rddId == that.rddId && this.slice == that.slice
case _ => false
}
override def index: Int = slice
@throws(classOf[IOException])
private def writeObject(out: ObjectOutputStream): Unit = Utils.tryOrIOException {
val sfactory = SparkEnv.get.serializer
// Treat java serializer with default action rather than going thru serialization, to avoid a
// separate serialization header.
sfactory match {
case js: JavaSerializer => out.defaultWriteObject()
case _ =>
out.writeLong(rddId)
out.writeInt(slice)
val ser = sfactory.newInstance()
Utils.serializeViaNestedStream(out, ser)(_.writeObject(values))
}
}
@throws(classOf[IOException])
private def readObject(in: ObjectInputStream): Unit = Utils.tryOrIOException {
val sfactory = SparkEnv.get.serializer
sfactory match {
case js: JavaSerializer => in.defaultReadObject()
case _ =>
rddId = in.readLong()
slice = in.readInt()
val ser = sfactory.newInstance()
Utils.deserializeViaNestedStream(in, ser)(ds => values = ds.readObject[Seq[T]]())
}
}
}
private[spark] class ParallelCollectionRDD[T: ClassTag](
sc: SparkContext,
@transient private val data: Seq[T],
numSlices: Int,
locationPrefs: Map[Int, Seq[String]])
extends RDD[T](sc, Nil) {
// TODO: Right now, each split sends along its full data, even if later down the RDD chain it gets
// cached. It might be worthwhile to write the data to a file in the DFS and read it in the split
// instead.
// UPDATE: A parallel collection can be checkpointed to HDFS, which achieves this goal.
override def getPartitions: Array[Partition] = {
val slices = ParallelCollectionRDD.slice(data, numSlices).toArray
slices.indices.map(i => new ParallelCollectionPartition(id, i, slices(i))).toArray
}
override def compute(s: Partition, context: TaskContext): Iterator[T] = {
new InterruptibleIterator(context, s.asInstanceOf[ParallelCollectionPartition[T]].iterator)
}
override def getPreferredLocations(s: Partition): Seq[String] = {
locationPrefs.getOrElse(s.index, Nil)
}
}
private object ParallelCollectionRDD {
/**
* Slice a collection into numSlices sub-collections. One extra thing we do here is to treat Range
* collections specially, encoding the slices as other Ranges to minimize memory cost. This makes
* it efficient to run Spark over RDDs representing large sets of numbers. And if the collection
* is an inclusive Range, we use inclusive range for the last slice.
*/
def slice[T: ClassTag](seq: Seq[T], numSlices: Int): Seq[Seq[T]] = {
if (numSlices < 1) {
throw new IllegalArgumentException("Positive number of partitions required")
}
// Sequences need to be sliced at the same set of index positions for operations
// like RDD.zip() to behave as expected
def positions(length: Long, numSlices: Int): Iterator[(Int, Int)] = {
(0 until numSlices).iterator.map { i =>
val start = ((i * length) / numSlices).toInt
val end = (((i + 1) * length) / numSlices).toInt
(start, end)
}
}
seq match {
case r: Range =>
positions(r.length, numSlices).zipWithIndex.map { case ((start, end), index) =>
// If the range is inclusive, use inclusive range for the last slice
if (r.isInclusive && index == numSlices - 1) {
new Range.Inclusive(r.start + start * r.step, r.end, r.step)
}
else {
new Range(r.start + start * r.step, r.start + end * r.step, r.step)
}
}.toSeq.asInstanceOf[Seq[Seq[T]]]
case nr: NumericRange[_] =>
// For ranges of Long, Double, BigInteger, etc
val slices = new ArrayBuffer[Seq[T]](numSlices)
var r = nr
for ((start, end) <- positions(nr.length, numSlices)) {
val sliceSize = end - start
slices += r.take(sliceSize).asInstanceOf[Seq[T]]
r = r.drop(sliceSize)
}
slices
case _ =>
val array = seq.toArray // To prevent O(n^2) operations for List etc
positions(array.length, numSlices).map { case (start, end) =>
array.slice(start, end).toSeq
}.toSeq
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy