org.apache.spark.util.Benchmark.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of spark-core Show documentation
Show all versions of spark-core Show documentation
Shaded version of Apache Spark 2.x.x for Presto
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.util
import java.io.{OutputStream, PrintStream}
import scala.collection.mutable
import scala.collection.mutable.ArrayBuffer
import scala.concurrent.duration._
import scala.util.Try
import org.apache.commons.io.output.TeeOutputStream
import org.apache.commons.lang3.SystemUtils
/**
* Utility class to benchmark components. An example of how to use this is:
* val benchmark = new Benchmark("My Benchmark", valuesPerIteration)
* benchmark.addCase("V1")()
* benchmark.addCase("V2")()
* benchmark.run
* This will output the average time to run each function and the rate of each function.
*
* The benchmark function takes one argument that is the iteration that's being run.
*
* @param name name of this benchmark.
* @param valuesPerIteration number of values used in the test case, used to compute rows/s.
* @param minNumIters the min number of iterations that will be run per case, not counting warm-up.
* @param warmupTime amount of time to spend running dummy case iterations for JIT warm-up.
* @param minTime further iterations will be run for each case until this time is used up.
* @param outputPerIteration if true, the timing for each run will be printed to stdout.
* @param output optional output stream to write benchmark results to
*/
private[spark] class Benchmark(
name: String,
valuesPerIteration: Long,
minNumIters: Int = 2,
warmupTime: FiniteDuration = 2.seconds,
minTime: FiniteDuration = 2.seconds,
outputPerIteration: Boolean = false,
output: Option[OutputStream] = None) {
import Benchmark._
val benchmarks = mutable.ArrayBuffer.empty[Benchmark.Case]
val out = if (output.isDefined) {
new PrintStream(new TeeOutputStream(System.out, output.get))
} else {
System.out
}
/**
* Adds a case to run when run() is called. The given function will be run for several
* iterations to collect timing statistics.
*
* @param name of the benchmark case
* @param numIters if non-zero, forces exactly this many iterations to be run
*/
def addCase(name: String, numIters: Int = 0)(f: Int => Unit): Unit = {
addTimerCase(name, numIters) { timer =>
timer.startTiming()
f(timer.iteration)
timer.stopTiming()
}
}
/**
* Adds a case with manual timing control. When the function is run, timing does not start
* until timer.startTiming() is called within the given function. The corresponding
* timer.stopTiming() method must be called before the function returns.
*
* @param name of the benchmark case
* @param numIters if non-zero, forces exactly this many iterations to be run
*/
def addTimerCase(name: String, numIters: Int = 0)(f: Benchmark.Timer => Unit): Unit = {
benchmarks += Benchmark.Case(name, f, numIters)
}
/**
* Runs the benchmark and outputs the results to stdout. This should be copied and added as
* a comment with the benchmark. Although the results vary from machine to machine, it should
* provide some baseline.
*/
def run(): Unit = {
require(benchmarks.nonEmpty)
// scalastyle:off
println("Running benchmark: " + name)
val results = benchmarks.map { c =>
println(" Running case: " + c.name)
measure(valuesPerIteration, c.numIters)(c.fn)
}
println
val firstBest = results.head.bestMs
// The results are going to be processor specific so it is useful to include that.
out.println(Benchmark.getJVMOSInfo())
out.println(Benchmark.getProcessorName())
out.printf("%-40s %16s %12s %13s %10s\n", name + ":", "Best/Avg Time(ms)", "Rate(M/s)",
"Per Row(ns)", "Relative")
out.println("-" * 96)
results.zip(benchmarks).foreach { case (result, benchmark) =>
out.printf("%-40s %16s %12s %13s %10s\n",
benchmark.name,
"%5.0f / %4.0f" format (result.bestMs, result.avgMs),
"%10.1f" format result.bestRate,
"%6.1f" format (1000 / result.bestRate),
"%3.1fX" format (firstBest / result.bestMs))
}
out.println
// scalastyle:on
}
/**
* Runs a single function `f` for iters, returning the average time the function took and
* the rate of the function.
*/
def measure(num: Long, overrideNumIters: Int)(f: Timer => Unit): Result = {
System.gc() // ensures garbage from previous cases don't impact this one
val warmupDeadline = warmupTime.fromNow
while (!warmupDeadline.isOverdue) {
f(new Benchmark.Timer(-1))
}
val minIters = if (overrideNumIters != 0) overrideNumIters else minNumIters
val minDuration = if (overrideNumIters != 0) 0 else minTime.toNanos
val runTimes = ArrayBuffer[Long]()
var i = 0
while (i < minIters || runTimes.sum < minDuration) {
val timer = new Benchmark.Timer(i)
f(timer)
val runTime = timer.totalTime()
runTimes += runTime
if (outputPerIteration) {
// scalastyle:off
println(s"Iteration $i took ${runTime / 1000} microseconds")
// scalastyle:on
}
i += 1
}
// scalastyle:off
println(s" Stopped after $i iterations, ${runTimes.sum / 1000000} ms")
// scalastyle:on
val best = runTimes.min
val avg = runTimes.sum / runTimes.size
Result(avg / 1000000.0, num / (best / 1000.0), best / 1000000.0)
}
}
private[spark] object Benchmark {
/**
* Object available to benchmark code to control timing e.g. to exclude set-up time.
*
* @param iteration specifies this is the nth iteration of running the benchmark case
*/
class Timer(val iteration: Int) {
private var accumulatedTime: Long = 0L
private var timeStart: Long = 0L
def startTiming(): Unit = {
assert(timeStart == 0L, "Already started timing.")
timeStart = System.nanoTime
}
def stopTiming(): Unit = {
assert(timeStart != 0L, "Have not started timing.")
accumulatedTime += System.nanoTime - timeStart
timeStart = 0L
}
def totalTime(): Long = {
assert(timeStart == 0L, "Have not stopped timing.")
accumulatedTime
}
}
case class Case(name: String, fn: Timer => Unit, numIters: Int)
case class Result(avgMs: Double, bestRate: Double, bestMs: Double)
/**
* This should return a user helpful processor information. Getting at this depends on the OS.
* This should return something like "Intel(R) Core(TM) i7-4870HQ CPU @ 2.50GHz"
*/
def getProcessorName(): String = {
val cpu = if (SystemUtils.IS_OS_MAC_OSX) {
Utils.executeAndGetOutput(Seq("/usr/sbin/sysctl", "-n", "machdep.cpu.brand_string"))
} else if (SystemUtils.IS_OS_LINUX) {
Try {
val grepPath = Utils.executeAndGetOutput(Seq("which", "grep")).stripLineEnd
Utils.executeAndGetOutput(Seq(grepPath, "-m", "1", "model name", "/proc/cpuinfo"))
.stripLineEnd.replaceFirst("model name[\\s*]:[\\s*]", "")
}.getOrElse("Unknown processor")
} else {
System.getenv("PROCESSOR_IDENTIFIER")
}
cpu
}
/**
* This should return a user helpful JVM & OS information.
* This should return something like
* "OpenJDK 64-Bit Server VM 1.8.0_65-b17 on Linux 4.1.13-100.fc21.x86_64"
*/
def getJVMOSInfo(): String = {
val vmName = System.getProperty("java.vm.name")
val runtimeVersion = System.getProperty("java.runtime.version")
val osName = System.getProperty("os.name")
val osVersion = System.getProperty("os.version")
s"${vmName} ${runtimeVersion} on ${osName} ${osVersion}"
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy