All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.roaringbitmap.ParallelAggregation Maven / Gradle / Ivy

The newest version!
package org.roaringbitmap;

import java.util.*;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.function.BiConsumer;
import java.util.function.BinaryOperator;
import java.util.function.Function;
import java.util.function.Supplier;
import java.util.stream.Collector;
import java.util.stream.IntStream;

import static org.roaringbitmap.Util.compareUnsigned;

/**
 *
 * These utility methods provide parallel implementations of
 * logical aggregation operators. AND is not implemented
 * because it is unlikely to be profitable.
 *
 * There is a temporary memory overhead in using these methods,
 * since a materialisation of the rotated containers grouped by key
 * is created in each case.
 *
 * Each method executes on the default fork join pool by default.
 * If this is undesirable (it usually is) wrap the call inside
 * a submission of a runnable to your own thread pool.
 *
 * 
 * {@code
 *
 *       //...
 *
 *       ExecutorService executor = ...
 *       RoaringBitmap[] bitmaps = ...
 *       // executes on executors threads
 *       RoaringBitmap result = executor.submit(() -> ParallelAggregation.or(bitmaps)).get();
 * }
 * 
*/ public class ParallelAggregation { private static final Collector>, RoaringArray, RoaringBitmap> XOR = new ContainerCollector(ParallelAggregation::xor); private static final OrCollector OR = new OrCollector(); /** * Collects containers grouped by their key into a RoaringBitmap, applying the * supplied aggregation function to each group. */ public static class ContainerCollector implements Collector>, RoaringArray, RoaringBitmap> { private final Function, Container> reducer; /** * Creates a collector with the reducer function. * @param reducer a function to apply to containers with the same key. */ public ContainerCollector(Function, Container> reducer) { this.reducer = reducer; } @Override public Supplier supplier() { return RoaringArray::new; } @Override public BiConsumer>> accumulator() { return (l, r) -> { assert l.size == 0 || compareUnsigned(l.keys[l.size - 1], r.getKey()) < 0; Container container = reducer.apply(r.getValue()); if (!container.isEmpty()) { l.append(r.getKey(), container); } }; } @Override public BinaryOperator combiner() { return (l, r) -> { assert l.size == 0 || r.size == 0 || compareUnsigned(l.keys[l.size - 1], r.keys[0]) < 0; l.append(r); return l; }; } @Override public Function finisher() { return RoaringBitmap::new; } @Override public Set characteristics() { return EnumSet.noneOf(Characteristics.class); } } /** * Collects a list of containers into a single container. */ public static class OrCollector implements Collector, Container, Container> { @Override public Supplier supplier() { return () -> new BitmapContainer(new long[1 << 10], -1); } @Override public BiConsumer> accumulator() { return (l, r) -> l.lazyIOR(or(r)); } @Override public BinaryOperator combiner() { return Container::lazyIOR; } @Override public Function finisher() { return Container::repairAfterLazy; } @Override public Set characteristics() { return EnumSet.of(Characteristics.UNORDERED); } } /** * Groups the containers by their keys * @param bitmaps input bitmaps * @return The containers from the bitmaps grouped by key */ public static SortedMap> groupByKey(RoaringBitmap... bitmaps) { Map> grouped = new HashMap<>(); for (RoaringBitmap bitmap : bitmaps) { RoaringArray ra = bitmap.highLowContainer; for (int i = 0; i < ra.size; ++i) { Container container = ra.values[i]; Short key = ra.keys[i]; List slice = grouped.get(key); if (null == slice) { slice = new ArrayList<>(); grouped.put(key, slice); } slice.add(container); } } SortedMap> sorted = new TreeMap<>(Util::compareUnsigned); sorted.putAll(grouped); return sorted; } /** * Computes the bitwise union of the input bitmaps * @param bitmaps the input bitmaps * @return the union of the bitmaps */ public static RoaringBitmap or(RoaringBitmap... bitmaps) { SortedMap> grouped = groupByKey(bitmaps); short[] keys = new short[grouped.size()]; Container[] values = new Container[grouped.size()]; List> slices = new ArrayList<>(grouped.size()); int i = 0; for (Map.Entry> slice : grouped.entrySet()) { keys[i++] = slice.getKey(); slices.add(slice.getValue()); } IntStream.range(0, i) .parallel() .forEach(position -> values[position] = or(slices.get(position))); return new RoaringBitmap(new RoaringArray(keys, values, i)); } /** * Computes the bitwise symmetric difference of the input bitmaps * @param bitmaps the input bitmaps * @return the symmetric difference of the bitmaps */ public static RoaringBitmap xor(RoaringBitmap... bitmaps) { return groupByKey(bitmaps) .entrySet() .parallelStream() .collect(XOR); } private static Container xor(List containers) { Container result = containers.get(0).clone(); for (int i = 1; i < containers.size(); ++i) { result = result.ixor(containers.get(i)); } return result; } private static Container or(List containers) { int parallelism; // if there are few enough containers it's possible no bitmaps will be materialised if (containers.size() < 16) { Container result = containers.get(0).clone(); for (int i = 1; i < containers.size(); ++i) { result = result.lazyIOR(containers.get(i)); } return result.repairAfterLazy(); } // heuristic to save memory if the union is large and likely to end up as a bitmap if (containers.size() < 512 || (parallelism = availableParallelism()) == 1) { Container result = new BitmapContainer(new long[1 << 10], -1); for (Container container : containers) { result = result.lazyIOR(container); } return result.repairAfterLazy(); } int step = Math.floorDiv(containers.size(), parallelism); int mod = Math.floorMod(containers.size(), parallelism); // we have an enormous slice (probably skewed), parallelise it return IntStream.range(0, parallelism) .parallel() .mapToObj(i -> containers.subList(i * step + Math.min(i, mod), (i + 1) * step + Math.min(i + 1, mod))) .collect(OR); } private static int availableParallelism() { return ForkJoinTask.inForkJoinPool() ? ForkJoinTask.getPool().getParallelism() : ForkJoinPool.getCommonPoolParallelism(); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy