All Downloads are FREE. Search and download functionalities are using the official Maven repository.

scala.collection.mutable.HashTable.scala Maven / Gradle / Ivy

The newest version!
/*                     __                                               *\
**     ________ ___   / /  ___     Scala API                            **
**    / __/ __// _ | / /  / _ |    (c) 2003-2013, LAMP/EPFL             **
**  __\ \/ /__/ __ |/ /__/ __ |    http://www.scala-lang.org/           **
** /____/\___/_/ |_/____/_/ | |                                         **
**                          |/                                          **
\*                                                                      */



package scala
package collection
package mutable

import java.lang.Integer.{numberOfLeadingZeros, rotateRight}
import scala.util.hashing.byteswap32

/** This class can be used to construct data structures that are based
 *  on hashtables. Class `HashTable[A]` implements a hashtable
 *  that maps keys of type `A` to values of the fully abstract
 *  member type `Entry`. Classes that make use of `HashTable`
 *  have to provide an implementation for `Entry`.
 *
 *  There are mainly two parameters that affect the performance of a hashtable:
 *  the initial size and the load factor. The size
 *  refers to the number of buckets in the hashtable, and the load
 *  factor is a measure of how full the hashtable is allowed to get before
 *  its size is automatically doubled. Both parameters may be changed by
 *  overriding the corresponding values in class `HashTable`.
 *
 *  @author  Matthias Zenger
 *  @author  Martin Odersky
 *  @version 2.0, 31/12/2006
 *  @since   1
 *
 *  @tparam A     type of the elements contained in this hash table.
 */
trait HashTable[A, Entry >: Null <: HashEntry[A, Entry]] extends HashTable.HashUtils[A] {
  // Replacing Entry type parameter by abstract type member here allows to not expose to public
  // implementation-specific entry classes such as `DefaultEntry` or `LinkedEntry`.
  // However, I'm afraid it's too late now for such breaking change.
  import HashTable._

  @transient protected var _loadFactor = defaultLoadFactor

  /** The actual hash table.
   */
  @transient protected var table: Array[HashEntry[A, Entry]] = new Array(initialCapacity)

  /** The number of mappings contained in this hash table.
   */
  @transient protected var tableSize: Int = 0

  /** The next size value at which to resize (capacity * load factor).
   */
  @transient protected var threshold: Int = initialThreshold(_loadFactor)

  /** The array keeping track of the number of elements in 32 element blocks.
   */
  @transient protected var sizemap: Array[Int] = null

  @transient protected var seedvalue: Int = tableSizeSeed

  protected def tableSizeSeed = Integer.bitCount(table.length - 1)

  /** The initial size of the hash table.
   */
  protected def initialSize: Int = 16

  /** The initial threshold.
   */
  private def initialThreshold(_loadFactor: Int): Int = newThreshold(_loadFactor, initialCapacity)

  private def initialCapacity = capacity(initialSize)

  private def lastPopulatedIndex = {
    var idx = table.length - 1
    while (table(idx) == null && idx > 0)
      idx -= 1

    idx
  }

  /**
   * Initializes the collection from the input stream. `readEntry` will be called for each
   * entry to be read from the input stream.
   */
  private[collection] def init(in: java.io.ObjectInputStream, readEntry: => Entry) {
    in.defaultReadObject

    _loadFactor = in.readInt()
    assert(_loadFactor > 0)

    val size = in.readInt()
    tableSize = 0
    assert(size >= 0)

    seedvalue = in.readInt()

    val smDefined = in.readBoolean()

    table = new Array(capacity(sizeForThreshold(_loadFactor, size)))
    threshold = newThreshold(_loadFactor, table.length)

    if (smDefined) sizeMapInit(table.length) else sizemap = null

    var index = 0
    while (index < size) {
      addEntry(readEntry)
      index += 1
    }
  }

  /**
   * Serializes the collection to the output stream by saving the load factor, collection
   * size and collection entries. `writeEntry` is responsible for writing an entry to the stream.
   *
   * `foreachEntry` determines the order in which the key/value pairs are saved to the stream. To
   * deserialize, `init` should be used.
   */
  private[collection] def serializeTo(out: java.io.ObjectOutputStream, writeEntry: Entry => Unit) {
    out.defaultWriteObject
    out.writeInt(_loadFactor)
    out.writeInt(tableSize)
    out.writeInt(seedvalue)
    out.writeBoolean(isSizeMapDefined)

    foreachEntry(writeEntry)
  }

  /** Find entry with given key in table, null if not found.
   */
  @deprecatedOverriding("No sensible way to override findEntry as private findEntry0 is used in multiple places internally.", "2.11.0")
  protected def findEntry(key: A): Entry =
    findEntry0(key, index(elemHashCode(key)))

  private[this] def findEntry0(key: A, h: Int): Entry = {
    var e = table(h).asInstanceOf[Entry]
    while (e != null && !elemEquals(e.key, key)) e = e.next
    e
  }

  /** Add entry to table
   *  pre: no entry with same key exists
   */
  @deprecatedOverriding("No sensible way to override addEntry as private addEntry0 is used in multiple places internally.", "2.11.0")
  protected def addEntry(e: Entry) {
    addEntry0(e, index(elemHashCode(e.key)))
  }

  private[this] def addEntry0(e: Entry, h: Int) {
    e.next = table(h).asInstanceOf[Entry]
    table(h) = e
    tableSize = tableSize + 1
    nnSizeMapAdd(h)
    if (tableSize > threshold)
      resize(2 * table.length)
  }

  /** Find entry with given key in table, or add new one if not found.
   *  May be somewhat faster then `findEntry`/`addEntry` pair as it
   *  computes entry's hash index only once.
   *  Returns entry found in table or null.
   *  New entries are created by calling `createNewEntry` method.
   */
  protected def findOrAddEntry[B](key: A, value: B): Entry = {
    val h = index(elemHashCode(key))
    val e = findEntry0(key, h)
    if (e ne null) e else { addEntry0(createNewEntry(key, value), h); null }
  }

  /** Creates new entry to be immediately inserted into the hashtable.
   *  This method is guaranteed to be called only once and in case that the entry
   *  will be added. In other words, an implementation may be side-effecting.
   */
  protected def createNewEntry[B](key: A, value: B): Entry

  /** Remove entry from table if present.
   */
  @deprecatedOverriding("Internal implementation does not admit sensible overriding of this method.", "2.11.0")
  protected def removeEntry(key: A) : Entry = {
    val h = index(elemHashCode(key))
    var e = table(h).asInstanceOf[Entry]
    if (e != null) {
      if (elemEquals(e.key, key)) {
        table(h) = e.next
        tableSize = tableSize - 1
        nnSizeMapRemove(h)
        e.next = null
        return e
      } else {
        var e1 = e.next
        while (e1 != null && !elemEquals(e1.key, key)) {
          e = e1
          e1 = e1.next
        }
        if (e1 != null) {
          e.next = e1.next
          tableSize = tableSize - 1
          nnSizeMapRemove(h)
          e1.next = null
          return e1
        }
      }
    }
    null
  }

  /** An iterator returning all entries.
   */
  protected def entriesIterator: Iterator[Entry] = new AbstractIterator[Entry] {
    val iterTable = table
    var idx       = lastPopulatedIndex
    var es        = iterTable(idx)

    def hasNext = es != null
    def next() = {
      val res = es
      es = es.next
      while (es == null && idx > 0) {
        idx = idx - 1
        es = iterTable(idx)
      }
      res.asInstanceOf[Entry]
    }
  }

  /** Avoid iterator for a 2x faster traversal. */
  protected def foreachEntry[U](f: Entry => U) {
    val iterTable = table
    var idx       = lastPopulatedIndex
    var es        = iterTable(idx)

    while (es != null) {
      val next = es.next // Cache next in case f removes es.
      f(es.asInstanceOf[Entry])
      es = next

      while (es == null && idx > 0) {
        idx -= 1
        es = iterTable(idx)
      }
    }
  }

  /** Remove all entries from table
   */
  protected def clearTable() {
    var i = table.length - 1
    while (i >= 0) { table(i) = null; i = i - 1 }
    tableSize = 0
    nnSizeMapReset(0)
  }

  private def resize(newSize: Int) {
    val oldTable = table
    table = new Array(newSize)
    nnSizeMapReset(table.length)
    var i = oldTable.length - 1
    while (i >= 0) {
      var e = oldTable(i)
      while (e != null) {
        val h = index(elemHashCode(e.key))
        val e1 = e.next
        e.next = table(h).asInstanceOf[Entry]
        table(h) = e
        e = e1
        nnSizeMapAdd(h)
      }
      i = i - 1
    }
    threshold = newThreshold(_loadFactor, newSize)
  }

  /* Size map handling code */

  /*
   * The following three sizeMap* functions (Add, Remove, Reset)
   * are used to update the size map of the hash table.
   *
   * The size map logically divides the hash table into `sizeMapBucketSize` element buckets
   * by keeping an integer entry for each such bucket. Each integer entry simply denotes
   * the number of elements in the corresponding bucket.
   * Best understood through an example, see:
   * table   = [/, 1, /, 6, 90, /, -3, 5]    (8 entries)
   * sizemap = [     2     |     3      ]    (2 entries)
   * where sizeMapBucketSize == 4.
   *
   * By default the size map is not initialized, so these methods don't do anything, thus,
   * their impact on hash table performance is negligible. However, if the hash table
   * is converted into a parallel hash table, the size map is initialized, as it will be needed
   * there.
   */
  @deprecatedOverriding("Internal implementation does not admit sensible overriding of this method.", "2.11.0")
  protected def nnSizeMapAdd(h: Int) = if (sizemap ne null) {
    sizemap(h >> sizeMapBucketBitSize) += 1
  }

  @deprecatedOverriding("Internal implementation does not admit sensible overriding of this method.", "2.11.0")
  protected def nnSizeMapRemove(h: Int) = if (sizemap ne null) {
    sizemap(h >> sizeMapBucketBitSize) -= 1
  }

  @deprecatedOverriding("Internal implementation does not admit sensible overriding of this method.", "2.11.0")
  protected def nnSizeMapReset(tableLength: Int) = if (sizemap ne null) {
    val nsize = calcSizeMapSize(tableLength)
    if (sizemap.length != nsize) sizemap = new Array[Int](nsize)
    else java.util.Arrays.fill(sizemap, 0)
  }

  private[collection] final def totalSizeMapBuckets = if (sizeMapBucketSize < table.length) 1 else table.length / sizeMapBucketSize

  @deprecatedOverriding("Internal implementation does not admit sensible overriding of this method.", "2.11.0")
  protected def calcSizeMapSize(tableLength: Int) = (tableLength >> sizeMapBucketBitSize) + 1

  // discards the previous sizemap and only allocates a new one
  protected def sizeMapInit(tableLength: Int) {
    sizemap = new Array[Int](calcSizeMapSize(tableLength))
  }

  // discards the previous sizemap and populates the new one
  @deprecatedOverriding("Internal implementation does not admit sensible overriding of this method.", "2.11.0")
  protected def sizeMapInitAndRebuild() {
    sizeMapInit(table.length)

    // go through the buckets, count elements
    var tableidx = 0
    var bucketidx = 0
    val tbl = table
    var tableuntil = 0
    if (tbl.length < sizeMapBucketSize) tableuntil = tbl.length else tableuntil = sizeMapBucketSize
    val totalbuckets = totalSizeMapBuckets
    while (bucketidx < totalbuckets) {
      var currbucketsize = 0
      while (tableidx < tableuntil) {
        var e = tbl(tableidx)
        while (e ne null) {
          currbucketsize += 1
          e = e.next
        }
        tableidx += 1
      }
      sizemap(bucketidx) = currbucketsize
      tableuntil += sizeMapBucketSize
      bucketidx += 1
    }
  }

  private[collection] def printSizeMap() {
    println(sizemap.toList)
  }

  @deprecatedOverriding("Internal implementation does not admit sensible overriding of this method.", "2.11.0")
  protected def sizeMapDisable() = sizemap = null

  @deprecatedOverriding("Internal implementation does not admit sensible overriding of this method.", "2.11.0")
  protected def isSizeMapDefined = sizemap ne null

  // override to automatically initialize the size map
  protected def alwaysInitSizeMap = false

  /* End of size map handling code */

  protected def elemEquals(key1: A, key2: A): Boolean = (key1 == key2)

  /**
    * Note: we take the most significant bits of the hashcode, not the lower ones
    * this is of crucial importance when populating the table in parallel
    */
  protected final def index(hcode: Int): Int = if (table.length == 1) 0 else improve(hcode, seedvalue) >>> numberOfLeadingZeros(table.length - 1)

  protected def initWithContents(c: HashTable.Contents[A, Entry]) = {
    if (c != null) {
      _loadFactor = c.loadFactor
      table = c.table
      tableSize = c.tableSize
      threshold = c.threshold
      seedvalue = c.seedvalue
      sizemap = c.sizemap
    }
    if (alwaysInitSizeMap && sizemap == null) sizeMapInitAndRebuild()
  }

  private[collection] def hashTableContents = new HashTable.Contents(
    _loadFactor,
    table,
    tableSize,
    threshold,
    seedvalue,
    sizemap
  )
}

private[collection] object HashTable {
  /** The load factor for the hash table (in 0.001 step).
   */
  private[collection] final def defaultLoadFactor: Int = 750 // corresponds to 75%
  private[collection] final def loadFactorDenum = 1000

  private[collection] final def newThreshold(_loadFactor: Int, size: Int) = ((size.toLong * _loadFactor) / loadFactorDenum).toInt

  private[collection] final def sizeForThreshold(_loadFactor: Int, thr: Int) = ((thr.toLong * loadFactorDenum) / _loadFactor).toInt

  private[collection] final def capacity(expectedSize: Int) = if (expectedSize == 0) 1 else powerOfTwo(expectedSize)

  trait HashUtils[KeyType] {
    protected final def sizeMapBucketBitSize = 5
    // so that:
    protected final def sizeMapBucketSize = 1 << sizeMapBucketBitSize

    protected def elemHashCode(key: KeyType) = key.##

    /**
      * Defer to a high-quality hash in [[scala.util.hashing]].
      * The goal is to distribute across bins as well as possible even if a hash code has low entropy at some bits.
      * 

* OLD VERSION - quick, but bad for sequence 0-10000 - little entropy in higher bits - since 2003 * {{{ * var h: Int = hcode + ~(hcode << 9) * h = h ^ (h >>> 14) * h = h + (h << 4) * h ^ (h >>> 10) * }}} * the rest of the computation is due to SI-5293 */ protected final def improve(hcode: Int, seed: Int): Int = rotateRight(byteswap32(hcode), seed) } /** * Returns a power of two >= `target`. */ private[collection] def powerOfTwo(target: Int): Int = { /* See http://bits.stephan-brumme.com/roundUpToNextPowerOfTwo.html */ var c = target - 1 c |= c >>> 1 c |= c >>> 2 c |= c >>> 4 c |= c >>> 8 c |= c >>> 16 c + 1 } class Contents[A, Entry >: Null <: HashEntry[A, Entry]]( val loadFactor: Int, val table: Array[HashEntry[A, Entry]], val tableSize: Int, val threshold: Int, val seedvalue: Int, val sizemap: Array[Int] ) { import scala.collection.DebugUtils._ private[collection] def debugInformation = buildString { append => append("Hash table contents") append("-------------------") append("Table: [" + arrayString(table, 0, table.length) + "]") append("Table size: " + tableSize) append("Load factor: " + loadFactor) append("Seedvalue: " + seedvalue) append("Threshold: " + threshold) append("Sizemap: [" + arrayString(sizemap, 0, sizemap.length) + "]") } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy