Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
com.facebook.presto.jdbc.internal.spi.predicate.TupleDomain Maven / Gradle / Ivy
/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.facebook.presto.jdbc.internal.spi.predicate;
import com.facebook.presto.jdbc.internal.spi.ConnectorSession;
import com.facebook.presto.jdbc.internal.spi.type.Type;
import com.facebook.presto.jdbc.internal.jackson.annotation.JsonCreator;
import com.facebook.presto.jdbc.internal.jackson.annotation.JsonIgnore;
import com.facebook.presto.jdbc.internal.jackson.annotation.JsonProperty;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.Optional;
import java.util.Set;
import java.util.function.Function;
import java.util.stream.Collectors;
import static java.util.Objects.requireNonNull;
import static java.util.stream.Collectors.toList;
import static java.util.stream.Collectors.toMap;
/**
* Defines a set of valid tuples according to the constraints on each of its constituent columns
*/
public final class TupleDomain
{
/**
* TupleDomain is internally represented as a normalized map of each column to its
* respective allowable value Domain. Conceptually, these Domains can be thought of
* as being AND'ed together to form the representative predicate.
*
* This map is normalized in the following ways:
* 1) The map will not contain Domain.none() as any of its values. If any of the Domain
* values are Domain.none(), then the whole map will instead be null. This enforces the fact that
* any single Domain.none() value effectively turns this TupleDomain into "none" as well.
* 2) The map will not contain Domain.all() as any of its values. Our convention here is that
* any unmentioned column is equivalent to having Domain.all(). To normalize this structure,
* we remove any Domain.all() values from the map.
*/
private final Optional> domains;
private TupleDomain(Optional> domains)
{
requireNonNull(domains, "domains is null");
this.domains = domains.flatMap(map -> {
if (containsNoneDomain(map)) {
return Optional.empty();
}
return Optional.of(Collections.unmodifiableMap(normalizeAndCopy(map)));
});
}
public static TupleDomain withColumnDomains(Map domains)
{
return new TupleDomain<>(Optional.of(requireNonNull(domains, "domains is null")));
}
public static TupleDomain none()
{
return new TupleDomain<>(Optional.empty());
}
public static TupleDomain all()
{
return withColumnDomains(Collections.emptyMap());
}
/**
* Extract all column constraints that require exactly one value or only null in their respective Domains.
* Returns an empty Optional if the Domain is none.
*/
public static Optional> extractFixedValues(TupleDomain tupleDomain)
{
if (!tupleDomain.getDomains().isPresent()) {
return Optional.empty();
}
return Optional.of(tupleDomain.getDomains().get()
.entrySet().stream()
.filter(entry -> entry.getValue().isNullableSingleValue())
.collect(toMap(Map.Entry::getKey, entry -> new NullableValue(entry.getValue().getType(), entry.getValue().getNullableSingleValue()))));
}
/**
* Convert a map of columns to values into the TupleDomain which requires
* those columns to be fixed to those values. Null is allowed as a fixed value.
*/
public static TupleDomain fromFixedValues(Map fixedValues)
{
return TupleDomain.withColumnDomains(fixedValues.entrySet().stream()
.collect(toMap(
Map.Entry::getKey,
entry -> {
Type type = entry.getValue().getType();
Object value = entry.getValue().getValue();
return value == null ? Domain.onlyNull(type) : Domain.singleValue(type, value);
})));
}
@JsonCreator
// Available for Jackson deserialization only!
public static TupleDomain fromColumnDomains(@JsonProperty("columnDomains") Optional>> columnDomains)
{
if (!columnDomains.isPresent()) {
return none();
}
return withColumnDomains(columnDomains.get().stream()
.collect(toMap(ColumnDomain::getColumn, ColumnDomain::getDomain)));
}
@JsonProperty
// Available for Jackson serialization only!
public Optional>> getColumnDomains()
{
return domains.map(map -> map.entrySet().stream()
.map(entry -> new ColumnDomain<>(entry.getKey(), entry.getValue()))
.collect(toList()));
}
private static boolean containsNoneDomain(Map domains)
{
return domains.values().stream().anyMatch(Domain::isNone);
}
private static Map normalizeAndCopy(Map domains)
{
return domains.entrySet().stream()
.filter(entry -> !entry.getValue().isAll())
.collect(toMap(Map.Entry::getKey, Map.Entry::getValue));
}
/**
* Returns true if any tuples would satisfy this TupleDomain
*/
public boolean isAll()
{
return domains.isPresent() && domains.get().isEmpty();
}
/**
* Returns true if no tuple could ever satisfy this TupleDomain
*/
public boolean isNone()
{
return !domains.isPresent();
}
/**
* Gets the TupleDomain as a map of each column to its respective Domain.
* - Will return an Optional.empty() if this is a 'none' TupleDomain.
* - Unmentioned columns have an implicit value of Domain.all()
* - The column Domains can be thought of as AND'ed to together to form the whole predicate
*/
@JsonIgnore
public Optional> getDomains()
{
return domains;
}
/**
* Returns the strict intersection of the TupleDomains.
* The resulting TupleDomain represents the set of tuples that would be valid
* in both TupleDomains.
*/
public TupleDomain intersect(TupleDomain other)
{
if (this.isNone() || other.isNone()) {
return none();
}
Map intersected = new HashMap<>(this.getDomains().get());
for (Map.Entry entry : other.getDomains().get().entrySet()) {
Domain intersectionDomain = intersected.get(entry.getKey());
if (intersectionDomain == null) {
intersected.put(entry.getKey(), entry.getValue());
}
else {
intersected.put(entry.getKey(), intersectionDomain.intersect(entry.getValue()));
}
}
return withColumnDomains(intersected);
}
@SafeVarargs
public static TupleDomain columnWiseUnion(TupleDomain first, TupleDomain second, TupleDomain... rest)
{
List> domains = new ArrayList<>(rest.length + 2);
domains.add(first);
domains.add(second);
domains.addAll(Arrays.asList(rest));
return columnWiseUnion(domains);
}
/**
* Returns a TupleDomain in which corresponding column Domains are unioned together.
*
* Note that this is NOT equivalent to a strict union as the final result may allow tuples
* that do not exist in either TupleDomain.
* For example:
*
*
* TupleDomain X: a => 1, b => 2
* TupleDomain Y: a => 2, b => 3
* Column-wise unioned TupleDomain: a = > 1 OR 2, b => 2 OR 3
*
*
* In the above resulting TupleDomain, tuple (a => 1, b => 3) would be considered valid but would
* not be valid for either TupleDomain X or TupleDomain Y.
* However, this result is guaranteed to be a superset of the strict union.
*/
public static TupleDomain columnWiseUnion(List> tupleDomains)
{
if (tupleDomains.isEmpty()) {
throw new IllegalArgumentException("tupleDomains must have at least one element");
}
if (tupleDomains.size() == 1) {
return tupleDomains.get(0);
}
// gather all common columns
Set commonColumns = new HashSet<>();
// first, find a non-none domain
boolean found = false;
Iterator> domains = tupleDomains.iterator();
while (domains.hasNext()) {
TupleDomain domain = domains.next();
if (!domain.isNone()) {
found = true;
commonColumns.addAll(domain.getDomains().get().keySet());
break;
}
}
if (!found) {
return TupleDomain.none();
}
// then, get the common columns
while (domains.hasNext()) {
TupleDomain domain = domains.next();
if (!domain.isNone()) {
commonColumns.retainAll(domain.getDomains().get().keySet());
}
}
// group domains by column (only for common columns)
Map> domainsByColumn = new HashMap<>(tupleDomains.size());
for (TupleDomain domain : tupleDomains) {
if (!domain.isNone()) {
for (Map.Entry entry : domain.getDomains().get().entrySet()) {
if (commonColumns.contains(entry.getKey())) {
List domainForColumn = domainsByColumn.get(entry.getKey());
if (domainForColumn == null) {
domainForColumn = new ArrayList<>();
domainsByColumn.put(entry.getKey(), domainForColumn);
}
domainForColumn.add(entry.getValue());
}
}
}
}
// finally, do the column-wise union
Map result = new HashMap<>(domainsByColumn.size());
for (Map.Entry> entry : domainsByColumn.entrySet()) {
result.put(entry.getKey(), Domain.union(entry.getValue()));
}
return withColumnDomains(result);
}
/**
* Returns true only if there exists a strict intersection between the TupleDomains.
* i.e. there exists some potential tuple that would be allowable in both TupleDomains.
*/
public boolean overlaps(TupleDomain other)
{
return !this.intersect(other).isNone();
}
/**
* Returns true only if the this TupleDomain contains all possible tuples that would be allowable by
* the other TupleDomain.
*/
public boolean contains(TupleDomain other)
{
return other.isNone() || columnWiseUnion(this, other).equals(this);
}
@Override
public boolean equals(Object obj)
{
if (this == obj) {
return true;
}
if (obj == null || getClass() != obj.getClass()) {
return false;
}
final TupleDomain other = (TupleDomain) obj;
return Objects.equals(this.domains, other.domains);
}
@Override
public int hashCode()
{
return Objects.hash(domains);
}
public String toString(ConnectorSession session)
{
StringBuilder buffer = new StringBuilder();
if (isAll()) {
buffer.append("ALL");
}
else if (isNone()) {
buffer.append("NONE");
}
else {
buffer.append(domains.get().entrySet().stream()
.collect(toMap(Map.Entry::getKey, entry -> entry.getValue().toString(session))));
}
return buffer.toString();
}
public TupleDomain transform(Function function)
{
if (!domains.isPresent()) {
return TupleDomain.none();
}
HashMap result = new HashMap<>(domains.get().size());
for (Map.Entry entry : domains.get().entrySet()) {
U key = function.apply(entry.getKey());
if (key == null) {
continue;
}
Domain previous = result.put(key, entry.getValue());
if (previous != null) {
throw new IllegalArgumentException(String.format("Every argument must have a unique mapping. %s maps to %s and %s", entry.getKey(), entry.getValue(), previous));
}
}
return TupleDomain.withColumnDomains(result);
}
public TupleDomain simplify()
{
if (isNone()) {
return this;
}
Map simplified = domains.get().entrySet().stream()
.collect(Collectors.toMap(Map.Entry::getKey, e -> e.getValue().simplify()));
return TupleDomain.withColumnDomains(simplified);
}
// Available for Jackson serialization only!
public static class ColumnDomain
{
private final C column;
private final Domain domain;
@JsonCreator
public ColumnDomain(
@JsonProperty("column") C column,
@JsonProperty("domain") Domain domain)
{
this.column = requireNonNull(column, "column is null");
this.domain = requireNonNull(domain, "domain is null");
}
@JsonProperty
public C getColumn()
{
return column;
}
@JsonProperty
public Domain getDomain()
{
return domain;
}
}
}